欢迎来到天天文库
浏览记录
ID:25928950
大小:52.50 KB
页数:7页
时间:2018-11-23
《基于神经网络理论的系统安全评价模型doc - 中国人工智能网》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、基于神经网络理论的系统安全评价模型王三明蒋军成(南京化工大学,南京,210009)摘要本文阐述了人工神经网络基本原理,研究分析了BP神经网络模型的缺陷并提出了优化策略。在此基础上,将神经网络理论应用于系统安全评价之中,提出了基于此理论的系统安全评价模型、实现方法和优点;评价实例证明此方法的可行性。关键词神经网络网络优化安全评价 1.引言 人工神经网络模拟人的大脑活动,具有极强的非线形逼近、大规模并行处理、自训练学习、自组织和容错能力等优点,将神经网络理论应用于系统安全评价之中,能克服传统安全评价方法的一些缺陷,能快
2、速、准确地得到安全评价结果。这将为企业安全生产管理与控制提供快捷和科学的决策信息,从而及时预测、控制事故,减少事故损失。 2.神经网络理论及其典型网络模型 人工神经网络是由大量简单的基本元件-神经元相互联结,模拟人的大脑神经处理信息的方式,进行信息并行处理和非线形转换的复杂网络系统。人工神经网络处理信息是通过信息样本对神经网络的训练,使其具有人的大脑的记忆、辨识能力,完成各种信息处理功能。人工神经网络具有良好的自学习、自适应、联想记忆、并行处理和非线形转换的能力,避免了复杂数学推导,在样本缺损和参数漂移的情况下
3、,仍能保证稳定的输出。人工神经网络这种模拟人脑智力的特性,受到学术界的高度重视和广泛研究,已经成功地应用于众多领域,如模式识别、图象处理、语音识别、智能控制、虚拟现实、优化计算、人工智能等领域。 按照网络的拓扑结构和运行方式,神经网络模型分为前馈多层式网络模型、反馈递归式网络模型、随机型网络模型等。目前在模式识别中应用成熟较多的模型是前馈多层式网络中的BP反向传播模型,其模型结构如图1。2.1BP神经网络基本原理 BP网络模型处理信息的基本原理是:输入信号Xi通过中间节点(隐层点)作用于输出节点,经过非线形
4、变换,产生输出信号Yk,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度Tjk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。2.2BP神经网络模型BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。(1)节点输出模型隐节点输出模
5、型:Oj=f(∑Wij×Xi-qj) (1)输出节点输出模型:Yk=f(∑Tjk×Oj-qk)(2)f-非线形作用函数;q-神经单元阈值。图1典型BP网络结构模型 (2)作用函数模型作用函数是反映下层输入对上层节点刺激脉冲强度的函数又称刺激函数,一般取为(0,1)内连续取值Sigmoid函数: f(x)=1/(1+e-x) (3)(3)误差计算模型误差计算模型是反映神经网络期望输出与计算输出之间误差大小的函数:
6、 Ep=1/2×∑(tpi-Opi)2 (4)tpi-i节点的期望输出值;Opi-i节点计算输出值。(4)自学习模型 神经网络的学习过程,即连接下层节点和上层节点之间的权重拒阵Wij的设定和误差修正过程。BP网络有师学习方式-需要设定期望值和无师学习方式-只需输入模式之分。自学习模型为 △Wij(n+1)=h×Фi×Oj+a×△Wij(n)(5)h-学习因子;Фi-输出节点i的计算误差;Oj-输出节点j的计算输出;a-动量因子。2.3BP
7、网络模型的缺陷分析及优化策略(1)学习因子h的优化采用变步长法根据输出误差大小自动调整学习因子,来减少迭代次数和加快收敛速度。h=h+a×(Ep(n)-Ep(n-1))/Ep(n)a为调整步长,0~1之间取值(6)(2)隐层节点数的优化 隐节点数的多少对网络性能的影响较大,当隐节点数太多时,会导致网络学习时间过长,甚至不能收敛;而当隐节点数过小时,网络的容错能力差。利用逐步回归分析法并进行参数的显著性检验来动态删除一些线形相关的隐节点,节点删除标准:当由该节点出发指向下一层节点的所有权值和阈值均落于死区(通常取
8、±0.1、±0.05等区间)之中,则该节点可删除。最佳隐节点数L可参考下面公式计算:L=(m+n)1/2+c(7)m-输入节点数;n-输出节点数;c-介于1~10的常数。(3)输入和输出神经元的确定利用多元回归分析法对神经网络的输入参数进行处理,删除相关性强的输入参数,来减少输入节点数。(4)算法优化由于BP算法采用的是剃度下降法,因而易陷于局
此文档下载收益归作者所有