椭圆综合题中定值定点、范围问题总结

椭圆综合题中定值定点、范围问题总结

ID:25882271

大小:1.50 MB

页数:23页

时间:2018-11-23

椭圆综合题中定值定点、范围问题总结_第1页
椭圆综合题中定值定点、范围问题总结_第2页
椭圆综合题中定值定点、范围问题总结_第3页
椭圆综合题中定值定点、范围问题总结_第4页
椭圆综合题中定值定点、范围问题总结_第5页
资源描述:

《椭圆综合题中定值定点、范围问题总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、WORD格式编辑整理椭圆一、直线与椭圆问题的常规解题方法:1.设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y=kx+b与x=my+n的区别)2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”)3.联立方程组;4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单)5.根据条件重转化;常有以下类型:①“以弦AB为直径的圆过点0”(提醒:需讨论K是否存在)②“点在圆内、圆上、圆外问题”“直角、锐角、钝角问题”“向量的数量积大于、等于、小于0问题”>0;③“等角、角平分、角互补问题”斜率关系(或)

2、;④“共线问题”(如:数的角度:坐标表示法;形的角度:距离转化法);(如:A、O、B三点共线直线OA与OB斜率相等);⑤“点、线对称问题”坐标与斜率关系;⑥“弦长、面积问题”转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择);6.化简与计算;7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0.专业知识分享WORD格式编辑整理二、基本解题思想:1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式;2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解;3、证明定值问题的方法:⑴常

3、把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明。4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明,5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;椭圆中的定值、定点问题一、常见基本题

4、型:在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的。(1)直线恒过定点问题1、已知点是椭圆上任意一点,直线的方程为,直线过P点与直线垂直,点M(-1,0)关于直线的对称点为N,直线PN恒过一定点G,求点G的坐标。专业知识分享WORD格式编辑整理2、已知椭圆两焦点、在轴上,短轴长为,离心率为,是椭圆在第一象限弧上一点,且,过P作关于直线F1P对称的两条直线PA、PB分别交椭[来源:学科网]圆于A、B两点。(1)求P点坐

5、标;(2)求证直线AB的斜率为定值;3、已知动直线与椭圆相交于、两点,已知点,求证:为定值.[4、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直线于点.(Ⅰ)求的最小值;(Ⅱ)若∙,求证:直线过定点;专业知识分享WORD格式编辑整理椭圆中的取值范围问题一、常见基本题型:对于求曲线方程中参数范围问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函数的值域来解.(1)从直线和二次曲线的位置关系出发,利用判别式的

6、符号,确定参数的取值范围。5、已知直线与轴交于点,与椭圆交于相异两点A、B,且,求的取值范围.(2)利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范围.6、已知点,,若动点满足.(Ⅰ)求动点的轨迹的方程;(Ⅱ)设过点的直线交轨迹于,两点,若,求直线的斜率的取值范围.[来源:学科网]专业知识分享WORD格式编辑整理(3)利用基本不等式求参数的取值范围7、已知点为椭圆:上的一动点,点的坐标为,求的取值范围.8.已知椭圆的一个顶点为,焦点在轴上.若右焦点到直线的距离为3.(1)求椭圆的方程.(2)设直线与椭圆相交于不同

7、的两点.当时,求的取值范围.9.如图所示,已知圆为圆上一动点,点在上,点在上,且满足的轨迹为曲线.(I)求曲线的方程;(II)若过定点F(0,2)的直线交曲线于不同的两[来源:学科网ZXXK]点(点在点之间),且满足,求的取值范围.专业知识分享WORD格式编辑整理10、.已知椭圆的中心在坐标原点,两个焦点分别为、,一个顶点为.(1)求椭圆的标准方程;(2)对于轴上的点,椭圆上存在点,使得,求的取值范围.11.已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若过点(2,0)的直线与椭圆相交于两

8、点,设为椭圆上一点,且满足(O为坐标原点),当<时,求实数取值范围.专业知识分享WORD格式编辑整理椭圆中的最值问题一、常见基本题型:(1)利用基本不等式求最值,12、已知椭圆两焦点、在轴上,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。