课题函数的单调性(一).doc

课题函数的单调性(一).doc

ID:25845478

大小:113.00 KB

页数:4页

时间:2018-11-22

课题函数的单调性(一).doc_第1页
课题函数的单调性(一).doc_第2页
课题函数的单调性(一).doc_第3页
课题函数的单调性(一).doc_第4页
资源描述:

《课题函数的单调性(一).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、课题:函数的单调性(一)一、教材分析1、教材内容本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2.1.3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题.2、教材所处地位、作用函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以

2、及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法.3、教学目标(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性的方法;(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质

3、.4、重点与难点教学重点(1)函数单调性的概念;(2)运用函数单调性的定义判断一些函数的单调性. 教学难点(1)函数单调性的知识形成;(2)利用函数图象、单调性的定义判断和证明函数的单调性.二、教法分析与学法指导本节课是一节较为抽象的数学概念课,因此,教法上要注意:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性.2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现

4、在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达.4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.在学法上:1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃.三、教学过程教学环节教学过程设计意图问题情境(播放中央电视台天气预报的音乐)如图为宿迁市2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:问题1怎样描述气温随时间增大的变化情况?问题2怎样用数学语言来刻画上述时段内“随着

5、时间的增大气温逐渐升高”这一特征?问题3在区间[4,16]上,气温是否随时间增大而增大?连续提出三个相关联的问题,包括问题3这样让人警觉的反例,使学生在解决问题的过程中,形成对函数单调性的认识.从学生熟悉的生活情境引入,让学生对函数单调性产生感性认识,为引出单调性的定义打好基础,有利于定义的自然生成,也揭示了单调性最本质的东西.定义形成通过对以上问题的分析,从正、反两方面领会函数单调性.师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当<时,都有<.仿照单调增函数定义,由学生说出单调减函数的定义.教师介绍单调性和单调区间的定义.函数单调性定义产

6、生是本节课的难点,难在:如何使学生从描述性语言过渡到严谨的数学语言.通过问题的分解,引导学生步步深入,直至找到最准确的数学语言来描述定义.这里体现以学生为主体,师生互动合作的教学新理念.定义运用1、回到问题情境,提出问题:你能找出气温图中的单调区间吗?2、根据你列举的函数,运用函数单调性的定义,证明你判断的结论.(1);(2);(3).运用实物投影,投影学生的证明,纠正出现的问题,规范证明的格式.请学生归纳运用定义法探求并证明函数单调性的步骤,投影演示:①取值;②作差变形;③定号;④判断.问题1利用函数的图象判断函数的单调性和单调区间,即图象法.问题2先从“形”上去判

7、断单调区间和单调性,再回归定义去,从“数”的角度证明单调性,使学生认识到“形”可帮助我们探索解题思路,而定义是最终解决问题的基础.规范解题过程、总结解题步骤是知识和方法的提炼,也是对学生学习的指导.问题讨论问题讨论函数的单调性.实际问题在一碗水中,加入一定量的糖,糖加得越多糖水就越甜.你能运用所学过的数学知识来解说这一现象吗?由图象探索函数的单调区间,再运用定义严密证明函数的单调性.“糖水问题”实际上是函数的一个实际背景.从定向性的证明,到自我探索单调区间完成证明,是一个很大的跨越,但在此探索过程中,学生体会到数学中“数形”的联系和互相验证,体会到成

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。