欢迎来到天天文库
浏览记录
ID:25679539
大小:53.50 KB
页数:7页
时间:2018-11-22
《浅论数学教学目的中的隐性目标论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、浅论数学教学目的中的隐性目标论文论文关键词数学教学隐性目标论文摘要数学的具体知识和能力要求可通过教材得以体现,是教学要实现的重点目标,是显性的;而后者不易被具体的数学知识所表示,是隐性的。现行的中学数论文关键词数学教学隐性目标论文摘要数学的具体知识和能力要求可通过教材得以体现,是教学要实现的重点目标,是显性的;而后者不易被具体的数学知识所表示,是隐性的。现行的中学数学教学大纲的教学目的中,除规定了具体的数学知识和基本技能外,还规定了“进一步培养学生的思维能力、运算能力、空间想象能力、解决实际问题的能力,以及数学创新意识;进一步培养良好的个性品
2、质和辩证唯物主义观点”。就数学课程来说,数学的具体知识和能力要求可通过教材得以体现,是教学要实现的重点目标,是显性的;而后者不易被具体的数学知识所表示,是隐性的。方明一老师认为隐性目标是指:“学习的兴趣、信心和毅力,科学态度,探索创新精神以及欣赏数学的美学价值。”实际教学中,笔者认为教学目标通常分为三个层次:一是知识目标,即本课时所要讲授的具体的数学知识,包括定义、定理、公式以及怎样运用这些定义、定理、公式解题。二是能力目标,即本课时的概念教学和解题教学中所涉及的技能技巧,这些技能技巧即为数学能力。三是隐性(素质)目标,如果把大纲中的内容细化
3、,可分为思想方法目标、德育目标、数学人文目标.即以数学知识为载体,以数学思想方法、数学思维品质为突破口去揭示事物的本质属性(可上升到哲学层面),重视数学教育对学生的全面发展所起的作用。应试教育与素质教育的区别就在于前者只关注显性目标,而后者关注两种目标的统一。数学教学中隐性目标的意义有:一是突出数学思想方法对理解数学知识、解决数学问题的指导作用(具有方法论意义);二是体现数学作为一种文化的特点,把数学中具有文化共性的内容、思想、方法揭示出来,让学生感悟到数学在人类进步中所起的巨大作用。一、注重数学思想方法的渗透,使学生成为会归纳、抽象和善于类
4、比的人。数学思想是人们对数学内容的本质认识,是对数学知识和数学方法的进一步抽象和概括,属于对数学规律的理性认识.而数学方法则是解决数学问题的手段,具有一定的可操作性.同一数学成果,当用它去解决别的问题时,就称为方法;当论及它在数学体系中的价值和意义时,则称为思想.要将数学思想和数学方法区分开来是困难的,于是人们把它们统称为数学思想方法。课堂教学中既要重视它的解题功能,也要重视它的文化功能。如整体思想贯穿于数学教学的全过程,从小学加减法中的加数合并到一起,减数合并到一起到初中的合并同类项、解方程(不等式)的换元法、各种代(变)换等.这种思想折射
5、到电子技术中便有集成电路,折射到管理学中便有1+1>2,通俗地说,“团结就是力量”。这些可看做是数学中整体思想在社会生活中的运用。数学思想方法的重要作用是让学生学会解数学题,这是目前师生对数学思想方法感兴趣的主要原因。若教师对问题的分析鞭辟入里,学生则觉得这样的解题思路是合情合理的,即使是特殊的解法,也是智慧的结晶,体现了数学思想方法的重要性.不重视数学思想方法的数学教学常被异化为解题“训练”。学生只知其然,不知其所以然.必然会影响学生学习数学的主动性和积极性。数学教学中不仅要把一些解题规律和程式化的做法归纳提炼成思想方法,还要善于把数学思想
6、类比到日常生活中,在教育上的作用是使学生能数学地思考问题,使数学教育的文化价值得以体现。这要靠老师恰当的点拨与引导,也是学习数学的根本原因。数学思想方法在教学中出现频率高、实用性强,应不失时机地抓住教育机会。二、注重德育教育的渗透,把学生培养成求真务实的人。陶行知先生说:“学校教育千教万教,教人求真。”数学学科中德育教育的主要内容有:辩证唯物主义、美育、爱国主义、人格教育.其目的在于运用数学知识,使学生能初步运用辩证唯物主义观点认识世界。通过古今数学成就的介绍培养学生的爱国主义思想、民族自尊心和自信心。通过数学问题的发生和解决过程的教学,培养
7、与锻炼学生知难而进的坚强意志,败而不馁的心理素质,一丝不苟的学习品质,勤于思考的良好学风,勇于探索的创新精神,实事求是的科学态度。数学课中有丰富的素材可用于对学生进行德育教育。坐标轴的平移是教育学生思想解放的好机会。在此之前学生已习惯于平移图象(曲线),是以坐标轴为参照系,现在要平移坐标轴,岂不“太岁头上动土”?坐标平移不仅是技术问题,更是思想观念问题.不突破平移图象的旧思想的束缚,就不敢想象能提出坐标平移问题.在分析平移前后的位置关系中,学生发现:图象向左(右)移相当于y轴向右(左)移,图象向上(下)移相当x轴向下(上移),它们的相对位置没
8、变.这里的变与不变揭示了事物的运动规律,学生由此可加深对唯物主义辩证法的理解。由此可教育学生对待传统的做法,当我们感到它在某些方面有些不便时,可以想到用别的办法来试
此文档下载收益归作者所有