讲课用线面垂直、面面垂直的性质定理

讲课用线面垂直、面面垂直的性质定理

ID:25633208

大小:775.00 KB

页数:12页

时间:2018-11-21

讲课用线面垂直、面面垂直的性质定理_第1页
讲课用线面垂直、面面垂直的性质定理_第2页
讲课用线面垂直、面面垂直的性质定理_第3页
讲课用线面垂直、面面垂直的性质定理_第4页
讲课用线面垂直、面面垂直的性质定理_第5页
资源描述:

《讲课用线面垂直、面面垂直的性质定理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3.4平面与平面垂直的性质乌苏一中王燕找二面角的平面角说明该平面角是直角。面面垂直的判定方法:1、定义法:2、判定定理:(线面垂直面面垂直)温故知新要证两平面垂直,只要在其中一个平面内找到另一个平面的一条垂线。知识探究:思考1:如果平面α与平面β互相垂直,直线l在平面α内,那么直线l与平面β的位置关系有哪几种可能?αβllαβlαβ平行相交线在面内知识探究:思考2:黑板所在平面与地面所在平面垂直,在黑板上是否存在直线与地面垂直?若存在,怎样画线?αβ两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。面面垂直线面垂直αβaAl平面与平面垂直的性质定理:符号语言:作用:何时用

2、:已知面面垂直时.关键:在一个平面内作(找)出垂直于交线的直线.AA推论:两个平面垂直,过其中一个平面内一点作另一个平面的垂线,这条垂线在这个平面内.αβαβPP例1:如图,AB是⊙O的直径,C是圆周上不同于A,B的任意一点,平面PAC⊥平面ABC,BOPAC(2)判断平面PBC与平面PAC的位置关系。(1)判断BC与平面PAC的位置关系,并证明。(1)证明:∵AB是⊙O的直径,C是圆周上不同于A,B的任意一点∴∠ACB=90°∴BC⊥AC又∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BC平面ABC∴BC⊥平面PAC(2)又∵BC平面PBC,∴平面PBC⊥平面PAC练1:如图,

3、已知PA⊥平面ABC,平面PAB⊥平面PBC,求证:BC⊥平面PABPABCE证明:过点A作AE⊥PB,垂足为E,∵平面PAB⊥平面PBC,平面PAB∩平面PBC=PB,∴AE⊥平面PBC∵BC平面PBC∴AE⊥BC∵PA⊥平面ABC,BC平面ABC∴PA⊥BC∵PA∩AE=A,∴BC⊥平面PAB例2证明:设bαβal在α内作直线b⊥l面面垂直性质线面垂直性质并证明。即学即练3《金版》48页第3题2、会利用“转化思想”解决垂直问题线面关系线线关系面面关系线面平行线线平行线面垂直线线垂直面面垂直面面平行课堂小结1、证题原则:从已知想性质,从求证想判定空间问题平面化注意辅助线的作用作业:把直角

4、三角板ABC的直角边BC放置桌面,另一条直角边AC与桌面所在的平面垂直,a是内一条直线,若斜边AB与a垂直,则BC是否与a垂直?课本p73A组2,5B组4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。