恒流二极管原理及特性.doc

恒流二极管原理及特性.doc

ID:25599285

大小:437.50 KB

页数:9页

时间:2018-11-21

恒流二极管原理及特性.doc_第1页
恒流二极管原理及特性.doc_第2页
恒流二极管原理及特性.doc_第3页
恒流二极管原理及特性.doc_第4页
恒流二极管原理及特性.doc_第5页
资源描述:

《恒流二极管原理及特性.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、恒流二极管恒流二极管是近年来问世的半导体恒流器件,在很宽的电压范围内输出恒定的电流,并具有很高的动态阻抗。由于它的恒流性能好、价格较低、使用简便,因此目前已被广泛用于恒流源、稳压源、放大器以及电子仪器的保护电路中。恒流二极管是利用栅源短接的结型场效应晶体管工作的。由此我们先来了解结型场效应管的工作原理。图1是一个结型场效应管的示意图,在一块N型(或P型)半导体材料的两边各扩散一个高杂质浓度的P型区(或N型区),就形成两个不对称的PN结。把两个P区(或N区)并联在一起,引出一个电极,称为栅极(g),在N型(或P型)半导体的两端各引出一个电极,分别称为源

2、极(s)和漏极(d)。夹在两个PN结中间的N区(或P区)是电流的通道,称为导电沟道(简称沟道)。这种结构的管子称为N沟道(或P沟道)结型场效应管。图1结型场效应管示意图图2N沟道结型场效应管结构剖面图N沟道和P沟道结型场效应管的工作原理完全相同,现以N沟道结型场效应管为例,分析其工作原理。N沟道结型场效应管工作时,需要外加如图3所示的偏置电压,即在栅-源极间加一负电压(vGS<0),使栅-源极间的P+N结反偏,栅极电流iG≈0,场效应管呈现很高的输入电阻。在漏-源极间加一正电压(vDS>0),使N沟道中的多数载流子电子在电场作用下由源极向漏极作漂移运

3、动,形成漏极电流iD。iD的大小主要受栅-源电压vGS控制,同时也受漏-源电压vDS的影响。因此,讨论场效应管的工作原理就是讨论栅-源电压vGS对沟道电阻及漏极电流iD的控制作用,以及漏-源电压vDS对漏极电流iD的影响。图3N沟道结型场效应管工作时施加电压示意图1.vGS对沟道电阻及iD的控制作用图4VGS对沟道电阻控制作用示意图图4所示电路说明了vGS对沟道电阻的控制作用。为便于讨论,先假设漏-源极间所加的电压vDS=0。当栅-源电压vGS=0时,沟道较宽,其电阻较小,如图4(a)所示。当vGS<0,且其大小增加时,在这个反偏电压的作用下,两个P

4、+N结耗尽层将加宽。由于N区掺杂浓度小于P+区,因此,随着

5、vGS

6、的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大,如图4(b)所示。当

7、vGS

8、进一步增大到一定值

9、VP

10、(夹断电压)时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断,如图4(c)所示。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压vDS,漏极电流iD也将为零。这时的栅-源电压称为夹断电压,用VP表示。上述分析表明,改变栅源电压vGS的大小,可以有效地控制沟道电阻的大小。若同时在漏源极间加上固定的正向电压vDS,则漏极电流iD将受vGS的

11、控制,

12、vGS

13、增大时,沟道电阻增大,iD减小。上述效应也可以看作是栅-源极间的偏置电压在沟道两边建立了电场,电场强度的大小控制了沟道的宽度,即控制了沟道电阻的大小,从而控制了漏极电流iD的大小。2.vDS对iD的影响图5vDS对iD的影响设vGS值固定,且VP

14、vGD

15、),即加

16、到该处P+N结上的反偏电压最大,这使得沟道两侧的耗尽层从源极到漏极逐渐加宽,沟道宽度不再均匀,而呈楔形,如图5(a)所示。在vDS较小时,它对iD的影响应从两个角度来分析:一方面vDS增加时,沟道的电场强度增大,iD随着增加;另一方面,随着vDS的增加,沟道的不均匀性增大,即沟道电阻增加,iD应该下降,但是在vDS较小时,沟道的不均匀性不明显,在漏极附近的区域内沟道仍然较宽,即vDS对沟道电阻影响不大,故iD随vDS增加而几乎呈线性地增加。随着vDS的进一步增加,靠近漏极一端的P+N结上承受的反向电压增大,这里的耗尽层相应变宽,沟道电阻相应增加,iD

17、随vDS上升的速度趋缓。当vDS增加到vDS=vGS-VP,即vGD=vGS-vDS=VP(夹断电压)时,漏极附近的耗尽层即在A点处合拢,如图5(b)所示,这种状态称为预夹断。与前面讲过的整个沟道全被夹断不同,预夹断后,漏极电流iD≠0。因为这时沟道仍然存在,沟道内的电场仍能使多数载流子(电子)作漂移运动,并被强电场拉向漏极。若vDS继续增加,使vDS>vGS-VP,即vGD<VP时,耗尽层合拢部分会有增加,即自A点向源极方向延伸,如图5(c),夹断区的电阻越来越大,但漏极电流iD却基本上趋于饱和,iD不随vDS的增加而增加。因为这时夹断区电阻很大,

18、vDS的增加量主要降落在夹断区电阻上,沟道电场强度增加不多,因而iD基本不变。但当vDS增加到大于某一极限值

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。