欢迎来到天天文库
浏览记录
ID:25490796
大小:816.00 KB
页数:28页
时间:2018-11-20
《课后习题答案%20第一、二、三章doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第一章导论1.计量经济学是一门什么样的学科?答:计量经济学的英文单词是Econometrics,本意是“经济计量”,研究经济问题的计量方法,因此有时也译为“经济计量学”。将Econometrics译为“计量经济学”是为了强调它是现代经济学的一门分支学科,不仅要研究经济问题的计量方法,还要研究经济问题发展变化的数量规律。可以认为,计量经济学是以经济理论为指导,以经济数据为依据,以数学、统计方法为手段,通过建立、估计、检验经济模型,揭示客观经济活动中存在的随机因果关系的一门应用经济学的分支学科。2.计量经济学与经济理论、数学、统计
2、学的联系和区别是什么?答:计量经济学是经济理论、数学、统计学的结合,是经济学、数学、统计学的交叉学科(或边缘学科)。计量经济学与经济学、数学、统计学的联系主要是计量经济学对这些学科的应用。计量经济学对经济学的应用主要体现在以下几个方面:第一,计量经济学模型的选择和确定,包括对变量和经济模型的选择,需要经济学理论提供依据和思路;第二,计量经济分析中对经济模型的修改和调整,如改变函数形式、增减变量等,需要有经济理论的指导和把握;第三,计量经济分析结果的解读和应用也需要经济理论提供基础、背景和思路。计量经济学对统计学的应用,至少有两
3、个重要方面:一是计量经济分析所采用的数据的收集与处理、参数的估计等,需要使用统计学的方法和技术来完成;一是参数估计值、模型的预测结果的可靠性,需要使用统计方法加以分析、判断。计量经济学对数学的应用也是多方面的,首先,对非线性函数进行线性转化的方法和技巧,是数学在计量经济学中的应用;其次,任何的参数估计归根结底都是数学运算,较复杂的参数估计方法,或者较复杂的模型的参数估计,更需要相当的数学知识和数学运算能力,另外,在计量经济理论和方法的研究方面,需要用到许多的数学知识和原理。计量经济学与经济学、数学、统计学的区别也很明显,经济学
4、、数学、统计学中的任何一门学科,都不能替代计量经济学,这三门学科简单地合起来,也不能替代计量经济学。计量经济学与经济学的主要区别在于:经济学一般根据逻辑推理得出结论,说明经济现象和过程的本质与规律,大多是定性的表述。虽然理论经济学有时也会涉及经济现象和过程的数量关系,如产出随投入要素的增减而增减,但不提供这类数量关系的具体度量,不说明随投入要素的增减产出增减多少。计量经济学则要对经济理论所确定的数量关系作出具体估计,也就是对经济理论进行经验的证明。计量经济学与统计学最根本的区别在于:第一,计量经济学是以问题为导向,以经济模型为
5、核心的,统计学则是以数据为核心,常常也是以数据为导向的。虽然现代统计学并不排斥经济理论和模型,有时也会利用它们,但不一定以特定的经济理论或模型为基础和出发点,常常可以通过对经济数据的统计直接得出结论,侧重于数据的采集、筛选和处理;第二,计量经济学对经济理论的实证作用较强。计量经济学从经济理论和经济模型出发,进行分析的过程,实际上是对经济理论证实或证伪的过程。这使得它对经济理论的验证作用很强,比统计学强的多;第三,计量经济学对经济问题有更重要的指导作用。计量经济学通常不仅要对数据进行处理和分析,获得经济问题的一些数字特征,而且要
6、借助于经济理论和数学工具,对经济问题作出更深刻的解剖和解读。经过计量经济分析实证检验的经济理论和模型,能对分析、研究和预测更广泛的经济问题起到重要作用。计量经济学与数学的区别不言而喻,因为数学只是计量经济分析及其理论研究的工具,与实证分析经济问题的计量经济学的区别显而易见。283.经典计量经济学与非经典计量经济学是如何划分的?答:经典计量经济学与非经典计量经济学的划分可从计量经济学的发展时期及其理论方法上的特征来把握。经典计量经济学一般指上世纪70年代以前发展起来的计量经济学,在理论方法上具有以下五个方面的共同特征:第一,在模
7、型类型上,采用随机模型;第二,在模型导向上,以经济理论为导向;第三,在模型结构上,采用线性或可化为线性的模型,反映变量之间的因果关系;第四,在数据类型上,采用时间序列数据或截面数据;第五,在估计方法上,采用最小二乘法或最大似然法。非经典计量经济学一般指上世纪70年代以后发展起来的计量经济学,也称现代计量经济学,与经典计量经济学理论方法上的五个方面的特征相对应,非经典计量经济学包括模型类型非经典计量经济学问题、模型导向非经典计量经济学问题、模型结构非经典计量经济学问题、数据类型非经典计量经济学问题、估计方法非经典计量经济学问题五
8、个方面的内容。4.计量经济研究中如何进行理论模型的设定?答:理论模型的设定,是对经济问题的数学描述或模拟,涉及变量的设定、模型函数形式的设定、参数取值范围的设定三个方面。理论模型设定中变量的设定,主要是解释变量的设定,因为被解释变量是作为研究对象的变量,可由研究问题本身直接确
此文档下载收益归作者所有