单独二分类logit模型在有序分类资料中的应用论文

单独二分类logit模型在有序分类资料中的应用论文

ID:25284746

大小:50.50 KB

页数:5页

时间:2018-11-19

单独二分类logit模型在有序分类资料中的应用论文_第1页
单独二分类logit模型在有序分类资料中的应用论文_第2页
单独二分类logit模型在有序分类资料中的应用论文_第3页
单独二分类logit模型在有序分类资料中的应用论文_第4页
单独二分类logit模型在有序分类资料中的应用论文_第5页
资源描述:

《单独二分类logit模型在有序分类资料中的应用论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、单独二分类Logit模型在有序分类资料中的应用论文林党新许涛沈念春赖胜邓政伟【摘要】目的:通过幽门螺杆菌与胃癌癌前病变关系研究的资料,探讨单独二分类Logit模型中有序分类资料中的应用。方法:选择293名患有轻度萎缩性胃炎的患者,对病变进展的影响因素分析分别采用累积比数Logit模型和单独的二分类Logit模型,并对两种模型的分析结果进行比较。结果:累积比数Logit模型分析结果显示幽门螺杆菌感染对胃癌癌前病变的影响无统计学意义(OR=1.158,95%CI:0.986~2.464),但得分检验

2、发现幽门螺杆菌不满足累积比数Logit模型的比例优势假定条件(χ2=24.100,P0.0001),故采用单独的二分类Logit模型进一步分析。结果表明.freelption)。这一条件要求自变量的回归系数应与分割点k无关,换句话说,无论从哪一点分类,对所有的累积logit,变量xk都有一个相同的βk估计。单独的二分类logit模型(separatebinarylogisticmodes)主要是把反应变量按照不同分割点合并为不同的二类,然后分别进行二分类的Logistic回归分析4。本研究中的反

3、应变量为随访5年后的病变,分为轻度CAG、重度CAG、肠上皮化生(IM)、不典型增生(DYS)共4类,有3个分割点,故定义为3个二分类Logit:一是将IM、重度CAG和轻度CAG合并,即{DYS}VS{IM,重度CAG,轻度CAG},表示至少进展到DYS;二是将DYS和IM合并,重度CAG和轻度CAG合并,即{DYS,IM}VS{重度CAG,轻度CAG},表示至少进展到IM;三是将DYS、IM和重度CAG合并,即{DYS,IM,重度CAG}VS{轻度CAG},表示至少进展到重度CAG。然后以上

4、述分类分别作3次二分类的logistic回归分析。整个分析过程均由SAS8.2(SASInstitute,Cary,N.C.)来完成5。2结果经3年随访后,共67人因各种原因失访,293人具有可供分析的完整资料。其中,118人病变仍为轻度CAG,91人进展为重度CAG,49人进展为IM,35人进展为DYS。具体进展情况见表1。累积比数Logit模型分析结果表明(表2),除性别因素外,其他因素对胃癌癌前病变的影响均无统计学意义。但从得分检验(scoretest)结果来看(表3),Hp不满足比例优势

5、假定条件(χ2=24.100,P0.0001),也就是说,在反应变量的不同分割点上,Hp的估计值不同。由于基本假定条件违背,该资料采用累积比数Logit模型分析未必合适。表1293人随访5年后的病变进展情况表2累积比数Logit模型的参数估计结果表3比例优势假定检验结果为了核实结果的正确性,并充分利用该资料有序的特点,故采用单独的二分类Logit模型进一步分析(表4),可以看出,年龄、性别、吸烟、饮酒这四个变量在不同分割点的OR值相差不大,而Hp的OR值则差别很大。把DYS、IM和重度CAG合并

6、为一类(即“至少进展为重度CAG”)时,Hp的影响有统计学意义(OR=2.334,95%CI:1.402~3.885)。而对“至少进展到DYS”和“至少进展到IM”的影响则无统计学意义。表4单独二分类Logit模型分析结果3讨论本次研究结果显示,年龄、性别、吸烟、饮酒对胃癌癌前病变的进展无影响。在校正上述因素的影响后,Hp感染主要作用于胃癌癌前病变的早期阶段,Hp阳性者至少进展到重度CAG的可能性是Hp阴性者的2.334倍(OR=2.334,95%CI:1.402~3.885),而对进展到更高级

7、的病变如IM、DYS,则Hp阳性与阴性并无差别。这与有学者提出的Hp主要作用于胃癌癌前病变的早期阶段的结论是一致的6,7。累积比数Logit模型是分析有序分类资料最常用的方法,但其应用需要满足一定的条件,其中一个基本条件就是比例优势假定条件,即自变量的回归系数应与分割点k无关。对于一个自变量xk而言,不同累积比数发生比的回归线相互平行,只是截距参数有所差别。以往有人认为,累积比数Logit模型对这一条件并不敏感,但在实际中,这一条件不满足往往容易导致错误的结论,本研究即证明了这一点。Ralf也曾

8、对这一问题进行了探讨8,并指出,如果不满足比例优势假定条件,最好采用单独的二分类Logit模型进行分析,否则做出的结论往往给人以误导甚至是毫无意义的。本研究发现资料不满足比例优势假定条件,因此采用了简单且易于理解的单独的二分类Logit模型进一步分析。结果表明,尽管Hp对进展到更高级的病变(IM、DYS)无影响,但对至少进展到重度CAG的影响有统计学意义,即Hp主要作用于胃癌癌前病变的早期阶段。如果忽略比例优势假定条件的检验,接受累积比数Logit模型的分析结果,便会得出相反的结论。当有序分类资

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。