欢迎来到天天文库
浏览记录
ID:25214701
大小:1.52 MB
页数:33页
时间:2018-11-18
《平面的法向量与平面的向量表》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.2.2平面的法向量与平面的向量表示一、复习引入1.直线与平面垂直的定义、判定和性质定义:如果一条直线垂直于一个平面内的任意一条直线,那么称这条直线和这个平面垂直。判定:如果一条直线垂直于一个平面内的两条相交直线,则这条直线与这个平面垂直。性质:(1)垂直于同一个平面的两条直线平行。(2)垂直于同一条直线的两个平面平行。二、概念形成概念1.平面的法向量已知平面,如果向量的基线与平面垂直,则叫做平面的法向量或说向量与平面正交。由平面的法向量的定义可知,平面的法向量有无穷多个,法向量一定垂直于与平面共面的所有向量。由于垂直于同一平面的两条直线平行,所以,一个平面的所有法向量都是平行的。模为1的法
2、向量,叫做单位法向量,记作显然二、概念形成概念2.直线与平面垂直的判定定理的向量证明直线与平面垂直的判定定理:如果一条直线和平面内的两条相交直线垂直,那么这条直线垂直于这个平面。已知:是平面内的两条相交的直线,且求证:正方体AC1棱长为1,求平面ADB1的一个法向量。二、概念形成概念1.平面的法向量例子:ABCDA1B1C1D1一个平面的法向量不只一个,但它们都是平行(或共线)的,我们借助于待定系数法可求出平面的一个法向量。待定系数法例题例1:已知点,,,其中求平面的一个法向量。有何关系?二、概念形成概念3.平面的向量表示空间直线可以用向量来表示,对于空间的平面也可以用向量来刻画。设A是空间任
3、意一点,为空间任意一个非零向量,适合条件的点M的集合构成什么样的图形?AMM1M2我们可以通过空间一点和一个非零向量确定唯一的一个与该向量垂直的平面。称此为平面的向量表达式。二、概念形成概念4.用法向量证明平面与平面平行及垂直设分别是平面的法向量,则有已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点。求证:平面DEA⊥平面A1FD1。二、概念形成概念4.用法向量证明平面与平面平行及垂直例子ABCDA1B1C1D1EF利用法向量证明两个平面垂直的基本思路是证明两个平面的法向量互相垂直。射影:已知平面和一点A,过点A作的垂线与交于点,则就是点A在平面内的正射影,也可简称射影。
4、二、概念形成概念5.用法向量证明“三垂线定理”预备知识:A斜线在平面上的正射影:设直线与平面交于点B,但不和垂直,那么直线叫做这个平面的斜线。斜线和平面的交点B叫做斜足。斜线在平面上的正射影:在直线上任取一点A,作A点在平面内的射影,则平面内直线叫做斜线在该平面内的射影。A已知是平面的斜线,是在平面内的射影,直线且二、概念形成概念5.用法向量证明“三垂线定理”三垂线定理:如果在平面内的一条直线与平面的一条斜线在这个平面内的射影垂直,则它也和这条斜线垂直。A求证:证明:如图,已知:求证:在直线l上取向量,只要证为逆定理(2)三垂线定理:如果在平面内的一条直线与平面的一条斜线在这个平面内的垂直,则
5、它也和这条斜线垂直.(3)三垂线定理的逆定理:如果平面内的一条直线和这个平面的一条斜线垂直,则它也和这条斜线在平面内的垂直.射影射影例题分析:1、判定下列命题是否正确(1)若a是平面α的斜线、直线b垂直于a在平面α内的射影,则a⊥b。()(2)若a是平面α的斜线,b是平面α内的直线,且b垂直于a在β内的射影,则a⊥b。()××三垂线定理关于三垂线定的应用,关键是找出平面(基准面)及垂线。至于射影则是由垂足、斜足来确定的。第一、定平面(基准面)第二、找平面垂线(电线杆)第三、看斜线,射影可见三垂线定理第四、证明直线a垂直于射影线,从而得出a与b垂直。强调:1°四线是相对同一个平面而言。2°定理的
6、关键是找“基准面”和“电线杆”。[例3]在正方体ABCDA1B1C1D1中,求证:A1C是平面BDC1的法向量[思路点拨]根据正方体中的垂直关系,找到A1C在平面ABCD和平面CDD1C1内的射影,由三垂线定理证明BD⊥A1C,C1D⊥A1C.[精解详析]在正方体中,AA1⊥平面ABCD,所以AC是A1C在平面ABCD内的射影,又AC⊥BD,所以BD⊥A1C.同理D1C是A1C在平面CDD1C1内的射影.所以C1D⊥A1C.又C1D∩BD=D,所以A1C⊥平面BDC1.1.正三棱锥PABC中,求证:BC⊥PA.证明:在正三棱锥PABC中,P在底面ABC内的射影O为正三角形ABC的中心,连接AO
7、,则AO是PA在底面ABC内的射影,且BC⊥AO,所以BC⊥PA.小结1.直线与平面垂直的定义2.平面的法向量:3.平面的向量表示:4.两平面平行或重合、垂直的充要条件6.有关平面的斜线概念,三垂线定理及其逆定理再见例.在空间直角坐标系内,设平面经过点,平面的法向量为,为平面内任意一点,求满足的关系式。解:由题意可得PO平面PAO∪a⊥PO③答:a⊥PO三垂线定理:在平面内的一条直线,如果和这个平
此文档下载收益归作者所有