电化学阻抗谱及其数据处理与解析

电化学阻抗谱及其数据处理与解析

ID:25108416

大小:4.72 MB

页数:142页

时间:2018-11-18

电化学阻抗谱及其数据处理与解析_第1页
电化学阻抗谱及其数据处理与解析_第2页
电化学阻抗谱及其数据处理与解析_第3页
电化学阻抗谱及其数据处理与解析_第4页
电化学阻抗谱及其数据处理与解析_第5页
资源描述:

《电化学阻抗谱及其数据处理与解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、电化学阻抗测量技术与电化学阻抗谱的数据处理 理论与应用浙江大学张鉴清电化学阻抗谱电化学阻抗谱(ElectrochemicalImpedanceSpectroscopy,简写为EIS),早期的电化学文献中称为交流阻抗(ACImpedance)。阻抗测量原本是电学中研究线性电路网络频率响应特性的一种方法,引用到研究电极过程,成了电化学研究中的一种实验方法。电化学阻抗谱方法是一种以小振幅的正弦波电位(或电流)为扰动信号的电化学测量方法。由于以小振幅的电信号对体系扰动,一方面可避免对体系产生大的影响,另一方面也使得扰动与体系的响应之间近似呈线性关系,这就使测

2、量结果的数学处理变得简单。同时,电化学阻抗谱方法又是一种频率域的测量方法,它以测量得到的频率范围很宽的阻抗谱来研究电极系统,因而能比其他常规的电化学方法得到更多的动力学信息及电极界面结构的信息。阻抗与导纳对于一个稳定的线性系统M,如以一个角频率为的正弦波电信号(电压或电流)X为激励信号(在电化学术语中亦称作扰动信号)输入该系统,则相应地从该系统输出一个角频率也是的正弦波电信号(电流或电压)Y,Y即是响应信号。Y与X之间的关系可以用下式来表示:Y=G(w)X如果扰动信号X为正弦波电流信号,而Y为正弦波电压信号,则称G为系统M的阻抗(Impedanc

3、e)。如果扰动信号X为正弦波电压信号,而Y为正弦波电流信号,则称G为系统M的导纳(Admittance)。阻纳是一个频响函数,是一个当扰动与响应都是电信号而且两者分别为电流信号和电压信号时的频响函数。由阻纳的定义可知,对于一个稳定的线性系统,当响与扰动之间存在唯一的因果性时,GZ与GY都决定于系统的内部结构,都反映该系统的频响特性,故在GZ与GY之间存在唯一的对应关系:GZ=1/GYG是一个随频率变化的矢量,用变量为频率f或其角频率的复变函数表示。故G的一般表示式可以写为:G(w)=G’(w)+jG”(w)RCLZRY不同电路元件的阻抗表示不同,虚

4、数单位;ω为角频率,f用Hz表示。R电阻C电容L电感Q(CPE)常相位角元件W(Warburg扩散阻抗)T双曲正切固体电解质O双曲余切有限扩散Q(CPE)常相位角元件ConstantPhaseAngleElement界面双电层-界面电容弥散效应圆心下降的半圆0

5、个时间常数等效电路B阻抗的复平面图阻抗波特(Bode)图电化学阻抗谱的基本条件因果性条件:当用一个正弦波的电位信号对电极系统进行扰动,因果性条件要求电极系统只对该电位信号进行响应。线性条件:当一个状态变量的变化足够小,才能将电极过程速度的变化与该状态变量的关系作线性近似处理。稳定性条件:对电极系统的扰动停止后,电极系统能恢复到原先的状态,往往与电极系统的内部结构亦即电极过程的动力学特征有关。因果性条件当用一个正弦波的电位信号对电极系统进行扰动,因果性条件要求电极系统只对该电位信号进行响应。这就要求控制电极过程的电极电位以及其它状态变量都必须随扰动信号

6、——正弦波的电位波动而变化。控制电极过程的状态变量则往往不止一个,有些状态变量对环境中其他因素的变化又比较敏感,要满足因果性条件必须在阻抗测量中十分注意对环境因素的控制。线性条件由于电极过程的动力学特点,电极过程速度随状态变量的变化与状态变量之间一般都不服从线性规律。只有当一个状态变量的变化足够小,才能将电极过程速度的变化与该状态变量的关系作线性近似处理。故为了使在电极系统的阻抗测量中线性条件得到满足,对体系的正弦波电位或正弦波电流扰动信号的幅值必须很小,使得电极过程速度随每个状态变量的变化都近似地符合线性规律,才能保证电极系统对扰动的响应信号与扰动

7、信号之间近似地符合线性条件。总的说来,电化学阻抗谱的线性条件只能被近似地满足。我们把近似地符合线性条件时扰动信号振幅的取值范围叫做线性范围。每个电极过程的线性范围是不同的,它与电极过程的控制参量有关。如:对于一个简单的只有电荷转移过程的电极反应而言,其线性范围的大小与电极反应的塔菲尔常数有关,塔菲尔常数越大,其线性范围越宽。稳定性条件对电极系统的扰动停止后,电极系统能否恢复到原先的状态,往往与电极系统的内部结构亦即电极过程的动力学特征有关。一般而言,对于一个可逆电极过程,稳定性条件比较容易满足。电极系统在受到扰动时,其内部结构所发生的变化不大,可以在

8、受到小振幅的扰动之后又回到原先的状态。在对不可逆电极过程进行测量时,要近似地满足稳定性条件往往是很困难的。这

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。