欢迎来到天天文库
浏览记录
ID:2508973
大小:616.00 KB
页数:40页
时间:2017-11-16
《[初三数学]一元二次方程导学案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、22.1.1《一元二次方程(1)》学案学习内容一元二次方程概念及一元二次方程一般式及有关概念.学习目标了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,
2、建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.学习过程:一、自主学习:(一)、根据题意列方程:(1)有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒底面积为3600cm2,那么铁皮各角应切去多大的正方形?(2)我校为丰富校园文化氛围,要设计一座2米高的人体雕像,使雕像的上部(腰以上)与全部高度的乘积,等于下部(腰以下)高度的平方,求雕像下部的高度.(3)要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,依据场地和时间等条件,
3、赛程计划安排7天,每天安排4场比赛,请问全校有多少个队参赛?(二)、探索新知:(1)、问题:上述4个方程是不是一元一次方程?有何共同点?40① ;② ;③ 。(2)一元二次方程的概念:像这样的等号两边都是_____,只含有___个未知数,并且未知数的最高次数是___的方程叫做一元二次方程。(3)任何一个关于x的一元二次方程都可以化为(a,b,c为常数,)的形式,我们把它称为一元二次方程的一般形式。为,为,为。(三)、注意点:(1)一元二次方程必须满足三个条件:a;b;c。(2)任何一个一
4、元二次方程都可以化为一般形式:.二次项系数、一次项系数、常数项都要包含它前面的符号。(3)二次项系数是一个重要条件,不能漏掉,为什么?(四)、自我尝试:1、下列列方程中,哪些是关于的一元二次方程?(1)(2)(3)(4)(5)2、把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项:(1)(2)(3)(五)阅读课本,P25页到27页,反思自主学习情况。二、巩固练习:课本27页练习1、2题三、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.40练习:方程(
5、2a—4)x2—2bx+a=0,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?四、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.五、布置作业1.教材P28习题22.11、(2)(4)(6)22.选用作业设计.补充:若x2-2xm-1+3=0是关于x的一元二次方程,求m的值作业设计一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0②ax2+bx+c=0③
6、(x-2)(x+5)=x2-1④3x2-=0A.1个B.2个C.3个D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为().A.2,3,-6B.2,-3,18C.2,-3,6D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1B.p>0C.p≠0D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________.403.关于x的方程(a-1)x2+
7、3x=0是一元二次方程,则a的取值范围是________.4.关于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程吗?为什么?:22.1.2《一元二次方程(2)》学案学习内容1.一元二次方程根的概念;2.根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.学习目标了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重难点
8、关键1.重点:判定一个数是否是方程的根;2.难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.学习过程:一、自主学习:(一)复习引
此文档下载收益归作者所有