欢迎来到天天文库
浏览记录
ID:25031250
大小:63.00 KB
页数:4页
时间:2018-11-17
《高中数学函数学习中数学思想方法的应用.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、高中数学函数学习中数学思想方法的应用G633.6数学学科知识的精髓所在即表现为数学思想。而对于高屮阶段的数学学科的学习而言,数学思想的核心又体现在函数与方程思想中。作为一名高中生,如果能掌握函数与方程的数学思想,就能够解决大量的问题,为看似难度较大的题目挖掘大量的隐含条件,在简化解题步骤的同时,提高解题质量和解题效率。一、方程与函数思想方程与函数思想,可以说是高中数学函数的基本思想,在历年高考中经常出现,而且是重点和难点。目前所学习的高中教材,大部分是以知识结构作为体系进行编写的,并且这其屮所蕴含的各种数学教学思想,还是见于整个教材之中,所以,对于大
2、多数的同学而言,如果只侧重于用一种方法解答题0,不会举一反三,很容易导致数学思想方法的主观随意性。函数思想的含义是:运用运动及变化的观点,可以用来建立函数关系,或是构造函数,并且运用函数的图像及性质分析问题,或者是转化问题,从而达到解决问题的目的;方程思想的含义是:分析数学教学问题中的各个变量间的等量关系,并据此建立方程,或者是方程组,也可以构造方程,并运用方程的各种性质分析问题、转化问题,进而解决问题。方程与函数的思想,在数学学习中,它非常强调对我们个人能力的培?B,而且非常注重对我们的运算能力及逻辑思维能力的训练,让我们所学的知识尽量都运用到生产
3、生活及实际工作中。与此同时,还可以了解题的技能及技巧,以及理解题目中蕴含的各种数学思想,使得我们可以主动的将所学的知识灵活的应用于生活实践以及以后的工作当中。首先,函数思想的核心在于:通过对函数关系中的相关图像及性质为出发点,展开对相关问题的分析。在具体的数学问题屮,主耍可以将题冃已知条件屮所给出的方程问题及不等式问题转换成为函数方面的问题。具体来说,通过自方程问题向函数问题的转化,可以通过对函数性质、图像的判定为方程求解提供相关的条件支持。同时,在实践教学中发现:对于题目中所给出的不等式恒成立问题,超越不等式问题,以及求解方程根等相关问题而言,若能
4、够实现对函数思想的合理应用,则对于简化操作步骤而言有着重要的意义。其次,方程思想的核心在于:以函数关系为出发点,构造与函数关系所对应的方程表达式。进而,通过对所构造方程表达式的进一步分析,实现对相关问题的求解。具体来说,通过自函数问题句方程向题的转换,可以将常规意义上的函数转化成为方程表达式.同时,在具体的实践操作过程中,对于二元方程组的应用是最普遍的。特别是对于涉及函数值域,以及直线/圆锥曲线位置关系等问题的求解而言,通过对方程思想的应用,往往能够取得事半功倍的效果。二、数形结合思想数形结合是数学解题中常用的思想人法,数形结合可以使某些抽象的数学问
5、题直观化、生动化,能够变抽象思想为形象思想,有助子把握数学问题的本质。纵观多年来的高考试题可以发现,巧妙地运用数形结合思想方法解决一些抽象的数学问题,可以起到事半功倍的效果,数形结合的i点是“以形助数”。数形结合的思想方法应用广泛,运用数形结合思想,不仅可以轻易直观的发现解题途径,而且还能避免复杂的计算与推理,人大简化解题过程,这在选择填空中更能显示其优越性。三、化归、类比思想化归、类比思想指的是对于需要解决的问题,将其转换归结为已有知识范围内的,可解问题的一种数学思想,简单的说就是将复杂化为简单,将陌生化为熟悉,也就是将抽象的问题,充分转化为具体直
6、观的问题,更通俗的是将一般性的问题,经过转化,成为直观的、比较特殊的问题。而且,化归、类比思想可以说是高中数学函数中最常见、最基本的思想方法,以至于函数屮,几乎一切问题的解决,几乎都是离不开化归、类比思想的。在高考中,很大部分的题目,他们的条件与目标的联系一般都不是显而易见的,只有通过不断地转化,我们才能有机会发现题目所给条件与目标之间他们的联系,从而可以慧姐吹来一个能够解决问题的方法。四、整体结合思想数形结合的含义是指在研究与解决数学问题的时候可以将反应问题的比较抽象的数量关系,通过与直观的平面以及空间图形相结合起来进行思考,从而得出解决问题的办法
7、。图形整合也是通过抽象思维,与比较形象思维,有机的结合在一起来解决问题,这是一种很重要的数学解题方法。这种方法具有直观性己经灵活性的特点。五、集合思想集合的定义是一些特定的事物,他们所组成的整体,在这些事物中,他们中的每一个都称为这个集合的一个元素。我们可以把集合这种思想运用到日常的数学函数学习中,增强我们的集体意识,还可以利用高中数学的重要特点,也就是常说的严谨性,学会在逻辑用语中,我们应该认真看清题目,充分理解题0的意思,而且还应该能从题B所给的条件中,推敲出其他的条件,并且还可以分析出哪些条件是有用的,而哪些条件是无意义的。将那些有帮助的条件归
8、为一个整体,为成功解题做好铺垫。数学思想在数学认识活动中,他的具体反映和体现是数学方法,并且数学方法还是处理
此文档下载收益归作者所有