欢迎来到天天文库
浏览记录
ID:24978710
大小:328.50 KB
页数:4页
时间:2018-11-17
《双曲线经典知识点总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、双曲线知识点总结班级姓名知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.注意:1.双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解;2.若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;3.若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点);4.若常数满足约束条件:,则动点轨迹不存在;5.若常数,则动点轨
2、迹为线段F1F2的垂直平分线。知识点二:双曲线的标准方程1.当焦点在轴上时,双曲线的标准方程:,其中;2.当焦点在轴上时,双曲线的标准方程:,其中.注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程;2.在双曲线的两种标准方程中,都有;3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上,双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为,.知识点三:双曲线的简单几何性质 双曲线(a>0,b>0)的简单几何性质 (1)对称性:对于双曲线标准方程(a>0,b>0),把x换成―
3、x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以双曲线(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。(2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a或x≥a。(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。 ②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。 ③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0
4、,―b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。实轴和虚轴的长度分别为
5、A1A2
6、=2a,
7、B1B2
8、=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。 注意:①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。 ②双曲线的焦点总在实轴上。③实轴和虚轴等长的双曲线称为等轴双曲线。(4)离心率: ①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作。②因为c>a>0,所以双曲线的离心率。由c2=a2+b2,可得,所以决定双曲线的开口大小,越大,e也越大,双曲线开口就越开阔。所以离心率可以用来表示双曲线开口的大小程度
9、。③等轴双曲线,所以离心率。(5)渐近线:经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是,我们把直线叫做双曲线的渐近线。注意:双曲线与它的渐近线无限接近,但永不相交。知识点四:双曲线与的区别和联系标准方程图形性质焦点,,焦距范围,,4/4对称性关于x轴、y轴和原点对称顶点轴实轴长=,虚轴长=离心率渐近线方程知识点五:双曲线的渐近线:(1)已知双曲线方程求渐近线方程:若双曲线方程为,则其渐近线方程为注意:(1)已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方
10、程。(2)已知渐近线方程求双曲线方程:若双曲线渐近线方程为,则可设双曲线方程为,根据已知条件,求出即可。(3)与双曲线有公共渐近线的双曲线方程可设为(,焦点在轴上,,焦点在y轴上)(4)等轴双曲线的渐近线等轴双曲线的两条渐近线互相垂直,为,因此等轴双曲线可设为.知识点六:双曲线图像中线段的几何特征:双曲线,如图:(1)实轴长,虚轴长,焦距,(2)离心率:;(3)顶点到焦点的距离:,;(4)中结合定义与余弦定理,将有关线段、、和角结合起来.1.如何确定双曲线的标准方程?当且仅当双曲线的对称中心在坐标原点,对称轴是坐标轴,双曲线的方程才是标准方程形式。此时,双曲线的焦点在坐标轴上。
11、2.双曲线标准方程中的三个量a、b、c的几何意义 双曲线标准方程中,a、b、c三个量的大小与坐标系无关,是由双曲线本身所确定的,分别表示双曲线的实半轴长、虚半轴长和半焦距长,均为正数,且三个量的大小关系为:c>a,c>b,且c2=b2+a2。3.如何由双曲线标准方程判断焦点位置 双曲线的焦点总在实轴上,因此已知标准方程,判断焦点位置的方法是:看x2、y2的系数,如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y轴上。注意:对于双曲线,a不一定大于b,因此不能像
此文档下载收益归作者所有