复数的三种表示形式

复数的三种表示形式

ID:24883060

大小:766.00 KB

页数:12页

时间:2018-11-16

复数的三种表示形式_第1页
复数的三种表示形式_第2页
复数的三种表示形式_第3页
复数的三种表示形式_第4页
复数的三种表示形式_第5页
资源描述:

《复数的三种表示形式》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3复数的三种表示形式在电工学中,正弦交流电的电压为,而复数的虚部恰好是电压的表达式,因此可考虑利用复数的运算法则进行正弦交流电的有关计算。通过前面的学习,我们知道在电工学关于交流电的研究中,电流、电压等物理量都可用正弦型函数来描述,但是解题时的计算过程却相当复杂。当复数用三角形式表示后,处理这类问题就变得十分简捷,从而确立了复数在交流电研究中的地位。复数的三角形式复数的三种表示形式复数的极坐标形式复数的指数形式其中,复数的三角形式任何一个复数z=a+bi都可以表示成对应于复数的三角形式,把z=a+bi叫做复数的代数形式。我们把

2、r(cosθ+isinθ)叫做复数的三角形式。z=r(cosθ+isinθ)的形式。解:例1将复数表示成三角形式。因为,b=1,所以即例2将复数表示成代数形式。解:例3复数是不是复数的三角形式,如果不是,把它表示成三角形式。解:不是复数的三角形式。复数的极坐标形式如图所示,设复数z=a+bi的模为r,辐角为θ,则复数z=a+bi还可以用来表示,此时a=rcosθ,b=rsinθ。我们把称为复数的极坐标形式。例1将复数用极坐标形式表示出来。解:因为的模辐角所以例2将复数化为三角形式和代数形式。解:分析:因为的模是3,辐角是复数的指数

3、形式根据欧拉公式,任何一个复数z=r(cosθ+isinθ)都可以表示成的形式,我们把这种形式叫做复数的指数形式。其中r为复数的模,底数e=2.71828…为无理数,幂指数中的i为虚数单位,θ为复数的辐角,单位为弧度。例如:例1把复数表示为指数形式和极坐标形式。解:例2把复数表示为三角形式和极坐标形式。解:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。