渗透于高等数学的数学建模思想论文

渗透于高等数学的数学建模思想论文

ID:24801207

大小:54.50 KB

页数:6页

时间:2018-11-15

渗透于高等数学的数学建模思想论文_第1页
渗透于高等数学的数学建模思想论文_第2页
渗透于高等数学的数学建模思想论文_第3页
渗透于高等数学的数学建模思想论文_第4页
渗透于高等数学的数学建模思想论文_第5页
资源描述:

《渗透于高等数学的数学建模思想论文》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、渗透于高等数学的数学建模思想论文摘要:数学建模是用数学代写论文的观点去解决实际生活中的问题。在完成数学建模的过程中,学生需要具备良好的数学建模思想;将数学建模融入高等数学,关键是渗透数学建模思想。煤矿瓦斯和煤尘的监测与控摘要:数学建模是用数学代写论文的观点去解决实际生活中的问题。在完成数学建模的过程中,学生需要具备良好的数学建模思想;将数学建模融入高等数学,关键是渗透数学建模思想。煤矿瓦斯和煤尘的监测与控制模型的建立与求解过程,反映出抽象思维、简化思维、批判性思维等数学能力。关键词:高等数学;数学建模;数学能力一、高等数学中的数学建模思想把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型

2、的解,验证模型的合理性,并用该数学模型所提供的答案来解决现实问题,我们把数学知识的这一应用过程称为数学建模。简单地说,所谓数学建模就是用数学的观点去解决实际生活中的问题。数学建模通常很难直接套用现成的结论或模式,但是有一种不变的东西始终在起作用,那就是数学建模思想。完成数学建模过程,学生需要具备良好的数学建模思想。将数学建模融入高等数学,而不是用“数学模型”或“数学实验”课的内容抢占各个高等数学的阵地2,关键是渗透数学建模思想。在高等数学教学过程中,应该培养学生用数学建模的观点和思考方式解决复杂的实际问题的能力。本文拟通过举例的方式对渗透于高等数学的数学建模思想进行研究。二、煤矿瓦斯和煤尘的监

3、测与控制模型的建立与求解2006年全国大学生数学建模竞赛题D题3有3问,下面分别建立模型并求解。1关于问题1根据每天瓦斯的绝对涌出量与相对涌出量的概念以及对赛题的分析,我们建立以下模型其中,Q为每天瓦斯的绝对涌出量(m3/min),P为每天瓦斯的相对涌出量(m3/t)。根据附表2中的数据求得如下结果:P=2319605(m3/t),Q=94305(m3/min)。依据“煤矿安全规程”第133条的分类标准得知,该矿是高瓦斯矿井。2关于问题2分析问题2及附表1中的数据,可知,当瓦斯浓度增加时,煤尘爆炸下限降低。为了更清楚地表示它们之间的关系,我们利用Mathematica40进行曲线拟合,得出:y

4、=311691e-0754693x。下面,在同一坐标系下,我们做出数据值点与函数y=311691e-0754693x的图形(即拟合函数),如下图所示:结合上图(横坐标表示瓦斯浓度(0≤x≤4,体积百分比%),纵坐标表示煤尘爆炸最低下限的浓度(g/m3),对问题2进行分析,得知:当瓦斯浓度为0的时候,煤尘爆炸下限与瓦斯浓度无关,只有煤尘浓度超过下限时才有发生爆炸的可能性(其他条件都是达到发生爆炸的条件),危险系数是1;当瓦斯浓度超过5%时,与煤尘的浓度是否超过下限无关(其他条件都达到发生爆炸的条件),即有无煤尘都存在发生爆炸的可能性,危险系数也是1;而当瓦斯浓度低于5%,煤尘爆炸下限低于30g/

5、m3时,瓦斯浓度就影响到煤尘爆炸的下限,即在某些区域内会出现不安全的情况。可见,在瓦斯浓度超过1%时,随时都会发生危险。根据几何概率知识,我们建立如下模型5:三、煤矿瓦斯和煤尘的监测、控制模型的建立与求解过程所反映的数学建模思想数学建模思想,本质土是要培养学生灵活运用数学知识解决实际中的问题的能力。在这一过程中,我们需要培养学生的抽象思维、简化思维、批判性思维等数学能力。1数学建模需要抽象思维分析上面模型的建立与求解过程,我们可以发现,解决问题时,离不开抽象思维,离不开对高等数学基本概念的深入理解和透彻分析。当解决问题1时,我们紧密结合“绝对涌出量”与“相对涌出量”的概念,解剖概念所包含的每一

6、点信息,找到了“绝对涌出量”与“相对涌出量”的计算公式,从而建立了数学模型I。可见,我们要把纷繁芜杂的实际问题,归结到高等数学的相关概念和定义之中,利用定义找到计算公式,从而建立数学模型。在这种层层分析的过程中,抽象思维起到了关键性作用。正是这种层层分析,才使得复杂问题得以解决。所以说,数学建模需要抽象思维。2数学建模需要简化思维所谓简化思维,就是把复杂问题进行简化,进而使本质凸显。就像进行X光透视一样,祛除血肉,尽剩骨架。只有迅速抓住主要矛盾,舍弃次要因素,找到问题的本质,才能“看透”问题的本质。例如,鉴别该矿井属于“低瓦斯矿井”还是“高瓦斯矿井”的问题,本质上是要我们先求出“绝对涌出量”与

7、“相对涌出量”,然后把它们与标准值比大小;煤矿发生爆炸的可能性,实际上是概率问题;该煤矿所需要的最佳(总)通风量,实质上就是最优问题,即带约束条件的线性规划问题。这种简化思维具有深刻性的特点。它并不是天生就具有的,可以经过精心培养而形成,经过刻苦锻炼而强化。在高等数学的教学过程中,需要培养学生的这种深层次的洞察能力。3数学建模需要批判性思维在数学模型建立、求解完成后,我们需要对所得的结果进行分析,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。