概率统计数学思想在教学中渗透

概率统计数学思想在教学中渗透

ID:24647330

大小:54.12 KB

页数:4页

时间:2018-11-14

概率统计数学思想在教学中渗透_第1页
概率统计数学思想在教学中渗透_第2页
概率统计数学思想在教学中渗透_第3页
概率统计数学思想在教学中渗透_第4页
资源描述:

《概率统计数学思想在教学中渗透》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、概率统计数学思想在教学中渗透一、概率统计数学思想的重要性概率论与数理统计是研究随机现象客观规律的数学学科,是我国本科教育中一门重要数学课程。概率论与数理统计是实际应用性很强的一门数学学科,它在经济管理、金融投资、保险精算、企业管理、投入产出分析、经济预测等众多经济领域都有广泛的应用。与别的数学课程不同的是概率论更强调直观和背景知识,如何根据学生的数学基础调整教学方法,以适应学生基础,培养其能力,并与其后续课程及专业应用结合,便成为任课教师面临的首要任务。所谓概率统计数学思想,就是对概率统计数学知识和方法的本质认识,是对其规律的理性概括和认知。要全面提高学

2、生的数学素质,形成创新思维能力,掌握科学的学习方法,就必须紧紧抓住数学思想和方法的教育及培养这一重要环节。按照人们认识事物的认知规律,由感性认识到理性认识,由感性的积累到理性的飞跃,才能形成一个完整的认知过程,从而在此基础上开始又一轮的更高程度的认知。概率统计学习也是这样,运用数学方法解决数学问题的过程,就是感性认识不断积累的过程。当感性认识量的积累迗到一定程度时,就会产生理性认识质的飞跃,从而上升为概率统计数学思想。在概率统计教学中,我们也要遵守这样的认知规律,由方法的积累到思想的飞跃,而不能违背科学的认知规律。二、概率统计数学思想在教学中的渗透过程1

3、.渗透“方法”,了解“思想”并不是所有的学生抽象思维能力都很强,大部分学生的抽象思维能力还有待于训练和提高。因此必须将概率统计数学知识作为载体,把其思想和方法的教学逐步渗透到概率统计数学知识的教学中。教师要把握好渗透的时机和渗透的程度,举一反三循序渐进。重视概率统计数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程。使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题的能力。忽视或压缩这些过程,一味向学生灌输知识的结论,就必然失去渗透概率数学思想、方法的一次次良机。教师在

4、教学中应把握住这个逐级渗透的原则,重点突出,难点分散,使学生易于接受。2.训练“方法”,理解“思想”概率统计数学思想的内容是丰富多彩的,方法也有难易之别。因此,教师在渗透概率统计数学思想方法的过程中,必须遵循循序渐进的原则,有重点有步骤地进行渗透和教学。教师要全面熟悉教材的编排体系、知识结构、能力层次、重点难点。认真钻研教学大纲,吃透教材,努力挖掘教材中进行概率统计数学思想方法渗透的条件和因素。对概率统计数学知识从思想方法的角度进行认真分析、系统归纳、科学概括,形成全面完整的认知和梳理。同时要对学生的认知能力、接受能力、知识能力基础有一个全面而准确的了解

5、和把握。由易到难、由浅入深、分阶段、分层次地进行概率统计数学思想方法的渗透。在整个教学中,教师分层次地渗透了归纳和演绎的概率统计数学方法,对学生养成良好的思维习惯就会起到重要作用。1.掌握“方法”,运用“思想”概率统计数学知识的学习要经过听讲、复习、做习题等才能掌握和巩固。概率统计数学思想方法的形成同样有一个循序渐进的过程。只有经过反复训练才能使学生真正领会。另外,使学生形成自觉运用概率统计数学思想方法的意识,必须建立起学生自我的“概率统计数学思想方法系统”,这更需要一个反复训练、不断完善的过程。通过多次重复性的演示,使学生真正理解、掌握类比的概率统计数

6、学方法。2.提炼“方法”,完善“思想”教学中要适时恰当地对概率统计数学方法给予提炼和概括,让学生有明确的印象。由于概率统计数学思想方法分散在各个不同部分,而同一问题又可以用不同的概率统计数学思想方法来解决。因此,教师的概括、分析是十分重要的。三、配合概率统计数学思想渗透教学中应注意的问题1.做好与中学内容的有效衔接由于学生在中学时已经初步学习了概率统计的一些内容,但是中学阶段介绍的内容分散、讲解的不够透彻,但涉及的面较广,主要内容都是离散型随机变量。所以,在处理教学内容时,要针对学生的不同情况及时调整。例如,讲解他们较熟悉的内容时,可以多设置提问,在复习

7、内容的同时,对已有内容加以深化,加深理解,揭示定义定理的本质。2.联系实际,培养学生的数学应用能力概率统计所讨论和研究的问题与现实生活有密切的联系,在教学中应该强调概率统计的实际应用,从而激发学生的学习兴趣,促进学生努力学习。例如,在参数估计的教学过程中,笔者举了捕鱼问题的例子,即如何利用概率统计的方法估计湖中鱼的数量,这个问题的提法很笼统,教学中笔者是这样处理的,启发学生把问题转化为数学模型:设湖中有N条鱼,现捕出r条,作上标记后放回湖中。过一段时间后再从湖中捕出s条(s

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。