欢迎来到天天文库
浏览记录
ID:24530941
大小:361.04 KB
页数:7页
时间:2018-11-14
《物理 《动量守恒定律的应用》教案(大纲版高二上)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、04动量守恒定律的应用教学目标1.学会分析动量守恒的条件。2.学会选择正方向,化一维矢量运算为代数运算。3.会应用动量守恒定律解决碰撞、反冲等物体相互作用的问题(仅限于一维情况),知道应用动量守恒定律解决实际问题的基本思路和方法。重点、难点分析1.应用动量守恒定律解决实际问题的基本思路和方法是本节重点。2.难点是矢量性问题与参照系的选择对初学者感到不适应。教具1.碰撞球系统(两球和多球);2.反冲小车。教学过程本节是继动量守恒定律理论课之后的习题课。1.讨论动量守恒的基本条件例1.在光滑水平面上有一个弹簧振子系统,如图所示,两振子的质量分别为和讨论此系统在振动时动量是否守恒
2、?分析:由于水平面上无摩擦,故振动系统不受外力(竖直方向重力与支持力平衡),所以此系统振动时动量守恒,即向左的动量与向右的动量大小相等。例2.承上题,但水平地面不光滑,与两振子的动摩擦因数相同,讨论m1=m2和m1≠m2两种情况下振动系统的动全是否守恒。分析:m1和m2所受摩擦力分别为和。由于振动时两振子的运动方向总是相反的,所以f1和f2的方向总是相反的。板书画图:对m1和m2振动系统来说合外力,但注意是矢量合。实际运算时为板书:显然,若m1=m2,则,则动量守恒;若m1≠m2,则,则动量不守恒。向学生提出问题:(l)m1=m2时动量守恒,那么动量是多少?(2)m1≠m2
3、时动量不守恒,那么振动情况可能是怎样的?与学生共同分析:(l)m1=m2时动量守恒,系统的总动量为零。开始时(释放振子时)p=0,此后振动时,当p1和p2均不为零时,它们的大小是相等的,但方向是相反的,所以总动量仍为零。数学表达式可写成(2)m1≠m2时。其方向取决于。其方向取决于m1和m2的大小以及运动方向。比如m1>m2,一开始m1向右(m2向左)运动,结果系统所受合外力方向向左(f1向左,f2向有,而且f1>f2)。结果是在前半个周期里整个系统一边振动一边向左移动。进一步提出问题:在m1=m2的情况下,振动系统的动量守恒,其机械能是否守恒?分析:振动是动能和弹性势能间
4、的能量转化。但由于有摩擦存在,在动能和弹性势能往复转化的过程中势必有一部分能量变为热损耗,直至把全部原有的机械能都转化为热,振动停止。所以虽然动量守恒(p=0),但机械能不守恒。(从振动到不振动)2.学习设置正方向,变一维矢量运算为代数运算例3.抛出的手雷在最高点时水平速度为10m/s,这时突然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。分析:手雷在空中爆炸时所受合外力应是它受到的重力G=(m1+m2)g,可见系统的动量并不守恒。但在水平方向上可以认为系统不受外力,所以在水平方向上动量是守恒的。强调:
5、正是由于动量是矢量,所以动量守恒定律可在某个方向上应用。那么手雷在以10m/s飞行时空气阻力(水平方向)是不是应该考虑呢?(上述问题学生可能会提出,若学生不提出,教师应向学生提出此问题。)一般说当v=10m/s时空气阻力是应考虑,但爆炸力(内力)比这一阻力大的多,所以这一瞬间空气阻力可以不计。即当内力远大于外力时,外力可以不计,系统的动量近似守恒。板书:解题过程:设手雷原飞行方向为正方向,则的速度。m2的速度方向不清,暂设为正方向。板书:设原飞行方向为正方向,则,;m1=0.3kg,m2=0.2kg系统动量守恒:此结果表明,质量为200克的部分以50m/s的速度向反方向运动
6、,其中负号表示与所设正方向相反。例4.机关枪重8kg,射出的子弹质量为20克,若子弹的出口速度是1000m/s,则机枪的后退速度是多少?分析:在水平方向火药的爆炸力远大于此瞬间机枪受的外力(枪手的依托力),故可认为在水平方向动量守恒。即子弹向前的动量等于机枪向后的动量,总动量维持“零”值不变。板书:设子弹速度v,质量m;机枪后退速度v,质量M。则由动量守恒有小结:上述两例都属于“反冲”和“爆炸”一类的问题,其特点是,系统近似动量守恒。演示实验:反冲小车实验点燃酒精,将水烧成蒸汽,气压增大后将试管塞弹出,与此同时,小车后退。与爆炸和反冲一类问题相似的还有碰撞类问题。演示小球碰
7、撞(两个)实验。说明在碰撞时水平方向外力为零(竖直方向有向心力),因此水平方向动量守恒。结论:碰撞时两球交换动量(),系统的总动量保持不变。例5.讨论质量为的球以速度去碰撞静止的质量为的球后,两球的速度各是多少?设碰撞过程中没有能量损失,水平面光滑。设A球的初速度的方向为正方向。由动量守恒和能量守恒可列出下述方程:①②解方程①和②可以得到引导学生讨论:(1)由表达式可知恒大于零,即B球肯定是向前运动的,这与生活中观察到的各种现象是吻合的。(2)由表达式可知当时,,即碰后A球依然向前滚动,不过速度已比原来小了当时,,
此文档下载收益归作者所有