等价无穷小量替换定理

等价无穷小量替换定理

ID:24507988

大小:135.50 KB

页数:3页

时间:2018-11-15

等价无穷小量替换定理_第1页
等价无穷小量替换定理_第2页
等价无穷小量替换定理_第3页
资源描述:

《等价无穷小量替换定理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、§2–6无穷小与无穷大的比较基础知识导学1、无穷小的比较定义1设α、β是某一极限过程中的两个无穷小,若(c为常数)则(1)当c≠0时,称在此极限过程中β与α是同阶无穷小;(2)当c=0时,称在此极限过程中β是α的高阶无穷小,记作β=o(α)(读作小欧α);(3)当c=1时,称在此极限过程中β与α是等价无穷小,记作β~α。2、无穷大的比较定义2设Y、Z是同一极限过程中的两个无穷大量,(1)如果=c≠0,则称Y与Z是同阶无穷大量;(2)如果=∞时,则称Z是Y的高阶无穷大量;(3)如果=c≠0(k>0),则称Z是关于(基本无穷大量)Y的k阶无穷大量。3、无穷小的阶与主部定义3把某极限过程

2、中的无穷小α作为基本无穷小,如果β与(k>0)是同阶的无穷小,即=c≠0,则称β是关于α的k阶无穷小。重点难点突破1.关于无穷小的比较要确定两个无穷小量是同阶、高阶和等价的关系,其实就是求这两个无穷小量比的极限,再根据定义判断两个无穷小的关系。注意(1)符号β=O(α)与β~α的含义β=O(α)表示β是α的高阶无穷小,即;β~α表示β与α是等价无穷小,即(1)同阶不一定等价,等价一定同阶。(2)利用等价无穷小求极限等价无穷小在求极限的过程中可以进行如下替换:若α~αˊ,β~βˊ,且存在,则=无穷小量的比较表设在自变量的变化过程中,均是无穷小量无穷小的比较定义记号()()2.关于无穷

3、小的阶当x→0时,由恒等式(ⅰ)o(xn)+o(xm)=o(xn)0<n<m(ⅱ)o(xn)o(xm)=o(xm+n)m>0,n>03.关于无穷小的替换定理设当时,,,存在,则.解题方法指导1.判断无穷小的阶有以下几种方法(仅供参考):例1当x→0时,下列无穷小量是x的几阶无穷小①x-3x3+x5②sinxtgx解:①因为当x→0时,在x-3x3+x5中3x3与x5都是x的高阶无穷小,由恒等式(ⅰ)所以,当x→0时,x-3x3+x5是x的一阶无穷小②因为当x→0时,sinx~x,tgx~x,由恒等式(ⅱ)可得sinxtgx=o(x2),即所以,当x→0时,sinxtgx是x的二阶无

4、穷小(2)先将原式变形,再判断阶数例2当x→0时,下列无穷小量是x的几阶无穷小①②tgx–sinx解:①通过分子有理化将原式变形=由此看出,当x→0时,是x的一阶无穷小,事实上②通过三角函数的公式将原式变形因为sinx~x,1-cosx~x2由此看出,当x→0时,tgx–sinx是x的三阶无穷小,事实上此题错误解法:解:因为所以,当x→0时,tgx–sinx是x的一阶无穷小这种解法是错误的,因为由无穷小阶的定义,β与比的极限不能为零。2.利用等价无穷小代换求极限常用等价无穷小有:当时,,,.例5求下列函数的极限(1),(2).解(1)=().(2)===().小结利用等价无穷小可代

5、换整个分子或分母,也可代换分子或分母中的因式,但当分子或分母为多项式时,一般不能代换其中一项。否则会出错.如上题,即得一错误结果.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。