构造全等三角形之截长补短

构造全等三角形之截长补短

ID:24293003

大小:232.47 KB

页数:4页

时间:2018-11-13

构造全等三角形之截长补短_第1页
构造全等三角形之截长补短_第2页
构造全等三角形之截长补短_第3页
构造全等三角形之截长补短_第4页
资源描述:

《构造全等三角形之截长补短》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、构造全等三角形之截长补短【笔记】截长补短法作辅助线,适合于证明线段的和、差、倍、分等类的题目(例:EF=DE+BF,CD=2CE)截长:在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。补短:通过延长短边或旋转等方式使两短边拼合到一起。【例1】如下图所示,△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD.  【例2】如图,AB∥CD,CE,BE分别平分∠BCD和∠CBA,点E在AD上.求证:BC=AB+CD.第4页【例3】如图,在正方形ABCD中,E为BC上的一点,F为CD上的一点,且∠EAF=45

2、,求BE,DF,EF之间的数量关系.【例4】如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.【过关检测】1如图,已知△ABC中,AH⊥BC于H,∠C=35°,∠B=70°,求证AB+BH=HC.2.在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于点P,BQ平分∠ABC交AC于点Q,且AP第4页与BQ相交于点O.求证:AB+BP=BQ+AQ.3.如图,△ABC是正三角形,△BDC是等腰三角形,BD=CD,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC边

3、于M、N两点,连接MN.探究BM、MN、NC之间的关系,并说明理由.4.已知,AD是△ABC的中线,AE⊥AB,AE=AB,AF⊥AC,AF=AC,连结EF.试猜想线段AD与EF的关系,并证明.【出门测】第4页1.如图,已知△ABC中,∠A=90°,AB=AC,BE平分∠ABC,CE⊥BD于E,求证:CE=BD.2.如图,已知正方形ABCD中,E为BC边上任意一点,AF平分∠DAE.求证:AE-BE=DF.3.已知,如图3-1,∠1=∠2,P为BN上一点,且PD⊥BC于点D,AB+BC=2BD.求证:∠BAP+∠BCP=180°

4、4.如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,连接BE并延长交AC于点F,AF=EF,求证:AC=BE.第4页

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。