特征空间稳健性分析:彩色图像分割 毕业论文外文翻译

特征空间稳健性分析:彩色图像分割 毕业论文外文翻译

ID:240949

大小:1.58 MB

页数:27页

时间:2017-07-13

特征空间稳健性分析:彩色图像分割  毕业论文外文翻译_第1页
特征空间稳健性分析:彩色图像分割  毕业论文外文翻译_第2页
特征空间稳健性分析:彩色图像分割  毕业论文外文翻译_第3页
特征空间稳健性分析:彩色图像分割  毕业论文外文翻译_第4页
特征空间稳健性分析:彩色图像分割  毕业论文外文翻译_第5页
资源描述:

《特征空间稳健性分析:彩色图像分割 毕业论文外文翻译》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、(1)外文文献原文RobustAnalysisofFeatureSpaces:ColorImageSegmentationAbstractAgeneraltechniquefortherecoveryofsignificantimagefeaturesispresented.Thetechniqueisbasedonthemeanshiftalgorithm,asimplenonparametricprocedureforestimatingdensitygradients.Drawbacksof

2、thecurrentmethods(includingrobustclustering)areavoided.Featurespaceofanynaturecanbeprocessed,andasanexample,colorimagesegmentationisdiscussed.Thesegmentationiscompletelyautonomous,onlyitsclassischosenbytheuser.Thus,thesameprogramcanproduceahighquality

3、edgeimage,orprovide,byextractingallthesignificantcolors,apreprocessorforcontent-basedquerysystems.A512512colorimageisanalyzedinlessthan10secondsonastandardworkstation.Graylevelimagesarehandledascolorimageshavingonlythelightnesscoordinate.Keywords:robu

4、stpatternanalysis,low-levelvision,content-basedindexing1IntroductionFeaturespaceanalysisisawidelyusedtoolforsolvinglow-levelimageunderstandingtasks.Givenanimage,featurevectorsareextractedfromlocalneighborhoodsandmappedintothespacespannedbytheircompone

5、nts.Significantfeaturesintheimagethencorrespondtohighdensityregionsinthisspace.Featurespaceanalysisistheprocedureofrecoveringthecentersofthehighdensityregions,i.e.,therepresentationsofthesignificantimagefeatures.Histogrambasedtechniques,Houghtransform

6、areexamplesoftheapproach.Whenthenumberofdistinctfeaturevectorsislarge,thesizeofthefeaturespaceisreducedbygroupingnearbyvectorsintoasinglecell.Adiscretizedfeaturespaceiscalledanaccumulator.Wheneverthesizeoftheaccumulatorcellisnotadequateforthedata,seri

7、ousartifactscanappear.TheproblemwasextensivelystudiedinthecontextoftheHoughtransform,e.g..Thus,forsatisfactoryresultsafeaturespaceshouldhavecontinuouscoordinatesystem.Thecontentofacontinuousfeaturespacecanbemodeledasasamplefromamultivariate,multimodal

8、probabilitydistribution.Notethatforrealimagesthenumberofmodescanbeverylarge,oftheorderoftens.Thehighestdensityregionscorrespondtoclusterscenteredonthemodesoftheunderlyingprobabilitydistribution.Traditionalclusteringtechniques,canbeusedforfeatu

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。