不定积分解题方法与技巧总结

不定积分解题方法与技巧总结

ID:24043964

大小:408.53 KB

页数:10页

时间:2018-11-12

不定积分解题方法与技巧总结_第1页
不定积分解题方法与技巧总结_第2页
不定积分解题方法与技巧总结_第3页
不定积分解题方法与技巧总结_第4页
不定积分解题方法与技巧总结_第5页
资源描述:

《不定积分解题方法与技巧总结》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、-不定积分解题方法总结摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。关键词:不定积分;总结;解题方法不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。1.利用基本公式。(这就不多说了~)2.第一类换元法。(凑微分)设f(μ)具有原函数F(μ)。则其中可微。用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一

2、步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2:例1:【解】例2:【解】3.第二类换元法:设是单调、可导的函数,并且具有原函数,则有换元公式----第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会用。主要有以下几种:(7)当根号内出现单项式或多项式时一般用代去根号。但当根号内出现高次幂时可能保留根号,(7)当根号内出现单项式或多项式时一般用代去根号。但当根号内出现高次幂时可能保留根号,----1.分部积分法.公式:分部积分法采用迂回的技巧,规避难点,挑容易积分的

3、部分先做,最终完成不定积分。具体选取时,通常基于以下两点考虑:(1)降低多项式部分的系数(2)简化被积函数的类型举两个例子吧~!例3:【解】观察被积函数,选取变换,则例4:【解】----上面的例3,降低了多项式系数;例4,简化了被积函数的类型。有时,分部积分会产生循环,最终也可求得不定积分。在中,的选取有下面简单的规律:将以上规律化成一个图就是:(a^xarcsinx)(lnxPm(x)sinx)νμ但是,当时,是无法求解的。对于(3)情况,有两个通用公式:(分部积分法用处多多~在本册杂志的《涉及lnx的不定积分》中,常可以看到分部积分)5不定积分中三角

4、函数的处理1.分子分母上下同时加、减、乘、除某三角函数。被积函数上下同乘变形为令,则为----2.只有三角函数时尽量寻找三角函数之间的关系,注意的使用。三角函数之间都存在着转换关系。被积函数的形式越简单可能题目会越难,适当的使用三角函数之间的转换可以使解题的思路变得清晰。3.函数的降次①形如积分(m,n为非负整数)当m为奇数时,可令,于是,转化为多项式的积分当n为奇数时,可令,于是,同样转化为多项式的积分。当m,n均为偶数时,可反复利用下列三角公式:不断降低被积函数的幂次,直至化为前两种情形之一为止。②形如和的积分(n为正整数)----令,则,,从而已转

5、化成有理函数的积分。类似地,可通过代换转为成有理函数的积分。③形如和的积分(n为正整数)当n为偶数时,若令,则,于是已转化成多项式的积分。类似地,可通过代换转化成有理函数的积分。当n为奇数时,利用分部积分法来求即可。4.当有x与三角函数相乘或除时一般使用分部积分法。1.几种特殊类型函数的积分。(1)有理函数的积分有理函数先化为多项式和真分式之和,再把分解为若干个部分分式之和。(对各部分分式的处理可能会比较复杂。出现时,记得用递推公式:)----1.有理真分式化为部分分式之和求解①简单的有理真分式的拆分②注意分子和分母在形式上的联系此类题目一般还有另外一种

6、题型:2.注意分母(分子)有理化的使用例5:【解】故不定积分求得。----(2)三角函数有理式的积分万能公式:的积分,但由于计算较烦,应尽量避免。对于只含有tanx(或cotx)的分式,必化成。再用待定系数来做。(注:没举例题并不代表不重要~)(3)简单无理函数的积分一般用第二类换元法中的那些变换形式。像一些简单的,应灵活运用。如:同时出现时,可令;同时出现时,可令;同时出现时,可令x=sint;同时出现时,可令x=cost等等。(4)善于利用,因为其求导后不变。这道题目中首先会注意到,因为其形式比较复杂。但是可以发现其求导后为与分母差,另外因为求导后不

7、变,所以容易想到分子分母同乘以。(5)某些题正的不行倒着来----这道题换元的思路比较奇特,一般我们会直接使用,然而这样的换元方法是解不出本题的。我概括此类题的方法为“正的不行倒着来”,当这类一般的换元法行不通时尝试下。这种思路类似于证明题中的反证法。(6)注意复杂部分求导后的导数注意到:----本题把被积函数拆为三部分:,的分子为分母的导数,的值为1,的分子为分母因式分解后的一部分。此类题目出现的次数不多,一般在竞赛中出现。(7)对于型积分,考虑的符号来确定取不同的变换。如果,设方程两个实根为,令,可使上述积分有理化。如果,则方程没有实根,令,可使上述

8、积分有理化。此中情况下,还可以设,至于采用哪种替换,具体问题具体分析。---

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。