欢迎来到天天文库
浏览记录
ID:24031758
大小:19.87 KB
页数:2页
时间:2018-11-12
《数理方程在实际中的应用new》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数理方程在实际中的应用数学是一门很抽象的学科,而数理方程更是如此,如果直接想象很难和实际联系起来。数学物理方程是指在物理学、力学、工程技术等问题中经过一些简化后所得到的、反映客观世界物理量之间关系的一些偏微分方程。虽然比较难联系实际去寻找偏微分方程的应用,但是实际中很多东西离不开数学物理方程,其中热方程便是一个广泛应用的例子。其中热方程在许多现象的数学模型中出现,而且常在金融数学中作为期权的模型出现。著名的布莱克-斯科尔斯模型中的差分方程可以转成热方程,并从此导出较简单的解。还有热方程在流形上的
2、推广是处理阿蒂亚-辛格指标定理的主要工具之一,由此也导向热方程在黎曼几何中的许多深入应用。拉普拉斯方程为:Δu=d^2u/dx^2+d^2u/dy^2=0,其中Δ为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ 而拉普拉斯方程,在电磁场方面广泛,而我们打电话依赖的电磁场便与其联系紧密。于是当我们要的信息得以传递波动是一种重要的偏微分方程,主要描述自然界中的各种的波动现象。工业生产例如开采煤矿,煤矿
3、很容易塌方,而了解煤层的岩土结构较为重要,在生产过程应该避免共振,于是就需要波动方程去解或是计算煤层是否能安全生产,是否易塌方。所以,不管是经济金融问题,工业生产问题;还是日常生活手机问候远方的朋友,使用卫星电视观看电视剧,我们无时无刻不在接触着这位很抽象而无处不在的朋友——数学物理方程。
此文档下载收益归作者所有