2018年度上海宝山区高考~数学一模试卷~

2018年度上海宝山区高考~数学一模试卷~

ID:23747140

大小:1.13 MB

页数:9页

时间:2018-11-10

2018年度上海宝山区高考~数学一模试卷~_第1页
2018年度上海宝山区高考~数学一模试卷~_第2页
2018年度上海宝山区高考~数学一模试卷~_第3页
2018年度上海宝山区高考~数学一模试卷~_第4页
2018年度上海宝山区高考~数学一模试卷~_第5页
资源描述:

《2018年度上海宝山区高考~数学一模试卷~》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.上海市宝山区2017—2018学年高三第一学期期末测试卷数学2017.12考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码.2.本试卷共有23道试题,满分150分.考试时间20分钟.一.填空题(本大题满分54分)本大题有14题,考生应在答题纸相应编号的空格内直接写结果,每个空格填对得4分,否则一律得零分.1.设集合,则________.2.________.3.函数的最小正周期为________.4.不等式的解集为________.5.若(其中为虚数单位),则______

2、__.6.若从五个数中任选一个数,则使得函数在上单调递增的概率为________.(结果用最简分数表示)7.在的二项展开式中,所有项的二项式系数之和为1024,则常数项的值等于________.8.半径为的圆内接三角形的面积是,角所对应的边依次为,则的值为________.9.已知抛物线的顶点为坐标原点,双曲线的右焦点是的焦点.若斜率为,且过的直线与交于两点,则________.10.直角坐标系内有点,将绕轴旋转一周,则所得几何体的体积为________.11.给出函数,,这里,若不等式()恒成立,为奇函数,且函数,恰有

3、两个零点,则实数的取值范围为________.12.若(,)个不同的点,,,满足:,则称点按横序排列.设四个实数使得.成等差数列,且两函数,图象的所有交点,,按横序排列,则实数的值为________.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.关于的二元一次方程组的增广矩阵为()A.B.C.D.14.设为空间中的四个不同点,则“中有三点在同一条直线上”是“在同一个平面上”的()A.充分非必要条件B.必要非充分

4、条件C.充要条件D.既非充分又非必要条件15.若函数的图象与函数的图象关于直线对称,则()A.B.C.D.16.称项数相同的两个有穷数列对应项乘积之和为这两个数列的内积.设:数列甲:为递增数列,且();数列乙:满足().则在甲、乙的所有内积中()A.当且仅当时,存在个不同的整数,它们同为奇数;B.当且仅当时,存在个不同的整数,它们同为偶数;C.不存在个不同的整数,要么同为奇数,要么同为偶数;D.存在个不同的整数,要么同为奇数,要么同为偶数.三.解答题(本大题满分76分)本大题共5题,解答下列各题必须在答题纸相应的编号规定

5、区域内写出必要的步骤17.(本题满分14分)本题共有2个小题,第1题满分6分,第2题满分8分.如图,在长方体中,已知,,为棱的中点.(1)求四棱锥的体积;(2)求直线与平面所成角的正切值..18.(本题满分14分)本题共有2个小题,第1题满分6分,第2题满分8分已知函数.(1)求在上的单调递减区间;(2)设的内角所对应的边依次为,若且,求面积的最大值,并指出此时为何种类型的三角形.19.(本题满分14分)本题共有2个小题,第1题满分6分,第2题满分8分.设数列及函数(),().(1)若等比数列满足,,求数列的前()项和;

6、(2)已知等差数列满足(均为常数,,且),().试求实数对,使得成等比数列.20.(本题满分16分)本题共有3个小题,第1题满分4分,第2题满分6分,.第3题满分6分.设椭圆:()过点,且直线过的左焦点.(1)求的方程;(2)设为上的任一点,记动点的轨迹为,与轴的负半轴,轴的正半轴分别交于点,的短轴端点关于直线的对称点分别为.当点在直线上运动时,求的最小值;(3)如图,直线经过的右焦点,并交于两点,且,在直线上的射影依次为,.当绕转动时,直线与是否相交于定点?若是,求出定点的坐标;否则,请说明理由.21.(本题满分18分

7、)本题共有3个小题,第1题满分4分,第2题满分6分,第3题满分8分.设,且.(1)已知(),求的值;(2)设()与均不为零,且().若存在,使得,求证:;(3)若(),().是否存在,使得数列满足(为常数,且)对一切正整数均成立?若存在,试求出所有的;若不存在,请说明理由..2018年宝山区高三一模数学参考答案第一部分、填选12345627891011124051104113141516CACD第二部分、简答题17.解:(1)因为长方体,所以点到平面的距离就是,故四棱锥的体积为.(2)(如图)联结,,因为长方体,且,所以

8、平面,故直线与平面所成角就是,在中,由已知可得,,因此,,即直线与平面所成角的正切值为.18.解:(1)由题意可得,故在上的单调递减区间为.(2)由已知可得,,,又,.故,当时取等号,即.面积的最大值为,此时是边长为2的正三角形.19.解:(1)由已知可得(),故(),所以(),从而是以为首项,为公比的等比数列,故数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。