单壁纳米管电学性质的理论研究

单壁纳米管电学性质的理论研究

ID:23685549

大小:54.00 KB

页数:6页

时间:2018-11-09

单壁纳米管电学性质的理论研究_第1页
单壁纳米管电学性质的理论研究_第2页
单壁纳米管电学性质的理论研究_第3页
单壁纳米管电学性质的理论研究_第4页
单壁纳米管电学性质的理论研究_第5页
资源描述:

《单壁纳米管电学性质的理论研究》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、单壁纳米管电学性质的理论研究张立云ZHANGLi-yun;康慧珍KANGHui-zhen;顾学文GUXue-a在通过石墨电弧法制备C60的过程中,从阴极沉积物中发现了大量直径在纳米量级的中空螺旋形碳管,Iijima将其命名为碳纳米管[1]。碳纳米管一般两端封闭,直径在几纳米到几十纳米之间,长度可达到数微米,是一种新型的准一维纳米材料。碳纳米管由于具有独特的结构和众多新颖的物理性能,如独特的金属或半导体导电性、极高的力学强度、储氢能力、吸附能力和较强的微波吸收能力等,因此一经发现变成为当今碳化材料和凝聚态物理研究的前沿和热点。对碳纳米管电子结构的理论研究最早采用的是能带折叠方

2、法,该方法结果表明所有的C管都具有金属导电性,其满足是3的整数倍的C也具有金属导电性,剩下的C管具有半导体导电性,其带隙宽度与管径成反比;X.Blase等[2]用基于局域密度近似的第一性原理计算了小管径的单壁碳纳米管的电子结构,Kilic[3]等用Troullier-Martins模守恒赝势的广义梯度近似计算了单壁C(7,0)管的电子结构,他们的研究结构都表明,单壁碳纳米管的带隙随着径向形变而变大;R.Heyd等[4]用紧束缚方法、L.Yang,等用局域密度近似[5]和考虑交换关联的广义梯度近似[6]分别计算了单壁碳纳米管的带隙随最轴向变化的规律;Takanori-Ito等

3、[7]计算了单壁C(10,0)管被拉伸和压缩时的形变总能量及形变时的电子结构。本文用基于第一性原理中的Hartree-Fock近似计算了一系列单壁碳纳米管的电子带隙,得出单壁碳纳米管中约有1/3的C(n,0)管呈现金属性,另外2/3的C(n,0)管为带隙约1eV的半导体管;计算了某些C管在轴向形变下电子带隙的变化,得出单壁C(n,0)管的带隙随轴向形变呈z字形变化,其中伴随有半导体和导体之间的相互转化;最后计算了碳纳米管的电子结构对杨氏模量的影响,计算说明杨氏模量Y的大小不仅与其几何结构(管径、管型)有关,也与其电子结构(金属性、非金属性)有关。Hartree-Fock近似

4、的计算结果比其它理论方法的结果更符合实验值[8,9],充分显示了第一性原理的优越性;同时提出单壁碳纳米管的杨氏模量不仅与其几何结构有关,还与电子结构(金属性、非金属性)有关,为进一步研究、分析手性管、多壁管及掺杂或带有缺陷的纳米管的电学性质的研究打下了基础。1计算方法介绍量子力学认为组成物质的微观粒子满足能量最小原理,即处于稳定状态下的材料的原子及其电子的运动应处于整个系统的最低能量状态,因此我们可以通过求解材料体系的薛定谔方程来寻找最低能量状态,从而确定与该能态相对应的体系的空间几何结构参数。本文用Hartree-Fock近似建立起纳米管的薛定谔方程,并通过自洽迭代求解得

5、到最低能量状态,确定纳米管在稳定状态时的结构参数,进一步根据空间结构计算纳米管的能带结构及能带结构随纳米管轴向形变的变化规律,以下是Hartree-Fock近似的简单介绍。Hartree-Fock近似就是将多粒子系统的Schrodinger方程通过绝热近似,把电子运动和原子核运动分开得到了多电子的Schrodinger方程,再根据泡利不相容原理和电子交换反对称性把多电子Schrodinger方程简化为单电子Schrodinger方程,即:2结果讨论2.1碳纳米管的带隙结构图1为C(n,0)管的带隙结构,由图可以看出带隙对管径、管型的依赖满足的规律:每三个组成一组,每组的带隙

6、随管径呈规律性变化:其中(3n,0)管的带隙较其它管明显偏小,寓示了这类管子将呈现金属性,其他两个管子带隙较大,将呈现半导体性。每组中相对应的纳米管,如金属管(6,0)、(9,0)、(12,0)、(15,0)、(18,0)的带隙均随管径增大而变小(见图1),究其原因可能是管径越大,把石墨平面卷曲成纳米管时卷曲形变越小,其能带结构与石墨平面的能带结构越接近。2.2轴向形变下碳纳米管带隙结构的变化图2为(11,0)(12,0)(13,0)单壁碳纳米管带隙随形变(-0.1≤ε≤0.1)的变化关系。图中可看出,(11,0)(13,0)管子的带隙随形变均呈z字形变化。其中(11,0)

7、管的带隙在-3.2%≤ε≤6.4%范围内呈现线性变化,在ε=-3.2%处,其带隙有最大值,约为1.61ev;在ε=6.4%处,其带隙有最小值,约为0ev,寓示此时(11,0)管发生半导体向导体的转变。(13,0)管的带隙在-6.9%≤ε≤3.2%范围内呈现线性变化,在ε=3.2%处,其带隙有最大值,约为1.42ev;在ε=-6.9%处,其带隙有最小值,约为0ev,寓示此时(13,0)管发生半导体向导体的转变。对于(12,0)管,其带隙随管子拉伸或压缩均变大。在形变ε=±10%处,其带隙值约为1.5ev,寓示此时(1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。