欢迎来到天天文库
浏览记录
ID:23628964
大小:19.19 KB
页数:7页
时间:2018-11-09
《初中数学说课稿《探索勾股定理》》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、今年,共有19所高校部分外国语专业可单独招生,这些单招的试点院校将按有关规定自行组织命题和单独考试,在全国统考前提前录取初中数学说课稿《探索勾股定理》 一、教材分析 (一)教材地位:这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)教学目标 知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题. 过程与方法:经历
2、探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想. 情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学. (三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。 教学难点:用面积法(拼图法)发现勾股定理。小语种自主招生的对象主要是外语教学质量较高的普通高中应届毕业生,考生被录取后,不得再报考其他高校,新生入学后也不得转入其他专业。今年,共有19所高校部分外国语专业可单独招生,这些单招的试点
3、院校将按有关规定自行组织命题和单独考试,在全国统考前提前录取 突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解. 二、教法与学法分析: 学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强. 教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式,选择
4、引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。 前面我们学习了用描点法画函数的图象的方法,下面请同学们根据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出下列函数的图象。 学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人. 三、教学过程设计小语种自主招生的对象主要是外语教学质量较高的普通高中应届毕业生,考生被录取后,不得再报考其他高校,新生入学后也不得转入其他专业。今年,共有19所高校部分外国语专业可单独招生,这些单招的试点院校将按有关规定自行组织命题和单独考试,在全国统考前提前
5、录取 从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。 1.创设情境,提出问题 相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习三角函数及与固有关的比例线段等知识打下良好的基
6、础。 2.实验操作,模型构建 3.回归生活,应用新知 4.知识拓展,巩固深化 5.感悟收获,布置作业 (一)创设情境提出问题 (1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树XX年国际数学的一枚纪念邮票大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值. (2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来米长的云梯,如果梯子的底部离墙基的距离是米,请问消防队员能否进入三楼灭火?小语种自主招生的对象主要是外语教学质量较高的普通高中应届毕业生,考生被录取后,不得再报考其他高校,新生入学后也不得转入其他专业。今年,共有19所
7、高校部分外国语专业可单独招生,这些单招的试点院校将按有关规定自行组织命题和单独考试,在全国统考前提前录取 设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节. (二)、实验操作模型构建 1.等腰直角三角形(数格子)2.一般直角三角形(割补) 问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系? 设计意图:这样做利于学生参与探索,
此文档下载收益归作者所有