资源描述:
《历届高考数学真题汇编专题平面向量最新模拟理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、【备战2013年】历届高考数学真题汇编专题7平面向量最新模拟理1、(2012滨州二模)在△ABC中,若AB=1,AC=,,则=___2、(2012德州一模)已知在平面直角坐标系上的区域D由不等式组确定,若为区域D上的动点,点A的坐标为(2,3),则的最大值为()A.5B.10C.14D.3、(2012济南3月模拟)在△ABC中,E、F分别为AB,AC中点.P为EF上任一点,实数x,y-23-用心爱心专心满足+x+y=0.设△ABC,△PBC,△PCA,△PAB的面积分别为S,,,,记,,,则取最大值时,2x+
2、y的值为A.-1B.1C.-D.4、(2012济南三模)已知非零向量、满足向量与向量的夹角为,那么下列结论中一定成立的是A.B.C.D.答案:B解析:因为向量与向量的夹角为,所以,即,所以,即,选B.5、(2012莱芜3月模拟)已知向量,,设,若,则实数的值是-23-用心爱心专心(A)(B)(C)(D)【答案】B【解析】,,因为,所以,解得,选B.6、(2012莱芜3月模拟)定义域为[a,b]的函数图像的两个端点为A、B,M(x,y)是图象上任意一点,其中,已知向量,若不等式恒成立,则称函数上“k阶线性近似”
3、。若函数在[1,2]上“k阶线性近似”,则实数k的取值范围为A.B.C.D.7、(2012临沂二模)在中,已知是边上的一点,若,,则(A)(B)(C)(D)【答案】B【解析】因为,所以,又,所以。8、(2012青岛二模).已知直线与圆交于、两点,且,其中为坐标原点,则正实数的值为.-23-用心爱心专心【答案】【解析】因为,所以,即三角形为直角三角形,所以,所以圆心到直线的距离为,又,所以。9、(2012青岛二模).已知向量,设函数,若函数的图象与的图象关于坐标原点对称.(Ⅰ)求函数在区间上的最大值,并求出此时
4、的值;(Ⅱ)在中,分别是角的对边,为锐角,若,,的面积为,求边的长.(Ⅱ)由得:化简得:又因为,解得:…………………………………………9分由题意知:,解得,又,所以-23-用心爱心专心故所求边的长为.10、(2012日照5月模拟)已知在中,的平分线AD交边BC于点D,且,则AD的长为(A)(B)(C)1(D)311、(2012泰安一模)若,且,则向量与的夹角为A.30°B.60°C.120°D.150°12、(2012威海二模)如图,菱形的边长为,,为的中点,若为菱形内任意一点(含边界),则的最大值为A.B.
5、C.D.9【答案】D-23-用心爱心专心【解析】13、(2012烟台二模)已知向量且,若变量x,y满足约束条件,则z的最大值为A.1B.2C.3D.4答案:C解析:由得(,1)(2,)=0,即z=2x+y,画出不等式组的可行域,如右图,目标函数变为:,作出y=-2x的图象,并平移,图由可知,直线过A点时,在y轴上的截距最大,此时z的值最大:求出A点坐标(1,1)=2×1+1=3,所以,选C。-23-用心爱心专心【江西省泰和中学2012届高三模拟】已知平面向量,满足与的夹角为,则“m=1”是“”的()A.充分不
6、必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【山东省日照市2012届高三模拟理】(3)如图所示,已知则下列等式中成立的是(A)(B)(C)(D)【山东实验中学2012届高三第四次诊断性考试理】11.的外接圆的圆心为O,半径为1,若,且,则向量在向量方向上的射影的数量为()(A).(B).(C).3(D).【答案】A【解析】由已知可以知道,的外接圆的圆心在线段BC的中点O处,因此是直角三角形。且,又因为-23-用心爱心专心因此答案为A【山东省微山一中2012届高三模拟理】9.若,恒成立,则△A
7、BC的形状一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【2012三明市普通高中高三模拟理】关于的方程,(其中、、都是非零平面向量),且、不共线,则该方程的解的情况是A.至多有一个解 B.至少有一个解C.至多有两个解D.可能有无数个解【2012厦门市高三模拟质检理】已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ等于A.-2 B.- C.-1 D.-【答案】C【解析】本题主要考查平面向量的共线的性质.属于基础知识、基
8、本运算的考查.λa+b=(λ+2,2λ),向量λa+b与向量c=(1,-2)共线,∴(λ+2)×(-2)=2λ×1,∴λ=-1-23-用心爱心专心【2012厦门市高三上学期模拟质检理】如图,已知,,·,∠AOP=,若,则实数t等于A. B. C. D.3【2012年石家庄市高中毕业班教学质检1】△ABC中,∠C=90°,且CA=CB=3,点M满足2,则·=A.18B.3C.15D.1