欢迎来到天天文库
浏览记录
ID:23482513
大小:290.00 KB
页数:10页
时间:2018-11-08
《《基于小波理论》word版》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、3)基于小波理论的模型(WaveletBasedModel)小波分析方法是对一组已知的交通流时间序列v0i(将原始信号视为尺度0上的信号)和选定的尺度函数ψ(t)、小波函数φ(t)及其对应的分解系数序列{an}、{bn}、重构系数序列{pn}、{qn},进行N尺度的分解,得到一个基本时间序列信号vji和一组干扰信号wji(j=1,2,…,N),然后利用其他预测方法(如ARMA)对分解后的近似信号、干扰信号进行预测,将分解信号及相应的预测结果利用重构算法(如Mallat算法)得到原尺度的信号及其预测结果[18]。在小波分析中,多尺度方法对于高频扰功信号具有较强的适应能力,在强干扰作
2、用下,该方法较之普通的时间序列方法具有更强的抗干扰能力,因此多尺度时间序列的方法更适用于短时交通流的预测。但是对信号进行二进小波分解时,每次分解都将使信号样本减少一半,进行分解后只能依据较少的样本数据来进行阶数和参数的估计,影响重构模型和预测精度。而且同时还需要利用其他时间序列方法,这本身就影响了预测精度,限制了它的应用,而且也没有考虑相邻路段的影响。4)基于分形理论的模型(FractalBasedModel)分形理论是描述复杂系统的一种强有力的工具。广义地,我们把形态、功能、信息等方面具有的自相似的研究对象统称为分形,把研究分形的性质及其应用的科学称为分形理论,分形几何揭示了系
3、统的无标度性或自相似性,而分维是描写分形的定量参数,通常是一个分数。一般地,如果某个形体是由将整个形体缩小到1/β的βD个形体所构成,则称D为相似维数。由于短时交通系统存在自相似性,使得短时交通流量具有可预测性。短时交通流的分形预测方法的关键是分维,一般利用建立在H.Whitney的拓扑嵌入理论及F.Takens证明的状态空间重构的理论之上的G-P算法进行计算。就是利用观测到的交通流时间序列vi(t-k)(k=1,2,…,P),确定原交通流系统的嵌入空间维数m和时滞参数τ,从而在m维上建立一个与原交通流系统拓扑结构相同的动力学系统。对于m维欧氏空间上的动力学系统v。=f(v)(其
4、中v=(v1,v2,…,vn)是系统的状态向量,也可以看做系统相空间上的一个点),随着时间的推延,其相空间上的轨迹可能渐进地趋向于其上的某个子集A(A是系统的吸引子),这样对系统特性的研究也就转化为对吸引子的研究。利用分形理论进行交通流量预测,存在很大的适应性和有效性。但是利用分形方法进行预测有一个基本前提,即:当前的交通流演化过程与过去出现的交通流的变化过程具有自相似性。因此分形预测只能在无标度区间内作尺度变换,一旦逾越此区间,自相似将不复存在,系统也没有分形就规律了,这就限制了观测时间跨度。而且利用分形理论进行短时交通流预测的研究,在现阶段还仅仅是进行分维,若要用于预测,还需
5、要进一步的研究。3.交通仿真模型(TrafficSimulationModel)Junchayaetal.在1992年提出“因为实际中影响交通的因素很多,很难用理论公式把所有的复杂因素都考虑进去,交通仿真模型可以提供一个唯一的手段来进行评价”[15]。交通仿真已经成为一个很重要的分析交通问题的工具。一般来说,交通仿真模型把车辆当作实体,用计算机模拟实际道路交通情况,对道路的交通状况进行仿真,得到道路预测的交通信息。因此,严格意义上说,交通仿真模型不能用于交通流预测的目的,因为它需要输入用于预测的交通流数据。而且,交通仿真模型不能实现实时性。然而,一旦交通流量数据能够通过其他的方法
6、预测得到后,仿真模型可以提供一种估计动态旅行时间的方法。换句话说,仿真模型提供了一个交通流、占有率和旅行时间之间关系的一个模拟实际的计算方法。当使用传统的仿真模型时,如CROSIM和SIMTraffic,要预先确定出行者的出行路径,这就要使用动态交通分配(DTAModel)的结果。DTA模型通过采集到的交通流数据和出行者出行选择的行为用于估计随时间变化的网络的状态。DTA模型通常分为以下三种:以数学为基础、以变分方程为基础、以主观控制理论为基础或者以仿真为基础的启发式模型[14]。所有这些方法的共同点是他们都是以传统的静态的交通分配的假设解决随时间变化的动态交通流问题,并且对任何
7、一个网络没有一个方法是通用的方法。动态交通分配在采集实时交通数据资料的基础上,按照一定的准则将动态交通需求量合理地分配到路网上,不断更新出行分布,从而得到路段实时交通量的方法,以实现降低交通拥挤程度和提高路网运行效率的目的。此类方法目标明确,理论清晰,但也存在以下不足之处:①假设条件苛刻,在实际路网中无法得到相应信息或取得信息的代价昂贵;②某些模型的解释性虽然较好,但无法求解或求解难度大,优化时间长,预测的实时性差,需要在实践中难于做到或无法做到的动态OD信息;③由于采用递推方式
此文档下载收益归作者所有