欢迎来到天天文库
浏览记录
ID:23401686
大小:262.91 KB
页数:9页
时间:2018-11-07
《2014高中-数学复习--讲义1:集合与简易逻辑》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、~2014高中数学复习讲义第一章集合与简易逻辑第1课时集合的概念及运算【考点导读】1.了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2.理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3.理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4.集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想
2、和分类讨论思想.【基础练习】1.集合用列举法表示.2.设集合,,则.3.已知集合,,则集合_______.4.设全集,集合,,则实数a的值为____8或2___.【范例解析】例.已知为实数集,集合.若,或,求集合B.分析:先化简集合A,由可以得出与的关系;最后,由数形结合,利用数轴直观地解决问题.解:(1),或.又,,可得.~~~~而或,或借助数轴可得或.【反馈演练】1.设集合,,,则=_________.2.设P,Q为两个非空实数集合,定义集合P+Q=,则P+Q中元素的个数是____8___个.3.设集合,.(1)若,求实数a的取值范围;(2)若,求实数a的取值范围;(3)若
3、,求实数a的值.解:(1)由题意知:,,.①当时,得,解得.②当时,得,解得.综上,.(2)①当时,得,解得;②当时,得,解得.综上,.(3)由,则.~~~~第2课命题及逻辑联结词【考点导读】1.了解命题的逆命题,否命题与逆否命题的意义;会分析四种命题的相互关系.2.了解逻辑联结词“或”,“且”,“非”的含义;能用“或”,“且”,“非”表述相关的数学内容.3.理解全称量词与存在量词的意义;能用全称量词与存在量词叙述简单的数学内容.理解对含有一个量词的命题的否定的意义;能正确地对含有一个量词的命题进行否定.【基础练习】1.下列语句中:①;②你是高三的学生吗?③;④.其中,不是命题
4、的有____①②④_____.2.一般地若用p和q分别表示原命题的条件和结论,则它的逆命题可表示为若q则p,否命题可表示为,逆否命题可表示为;原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.【范例解析】例1.写出下列命题的逆命题,否命题,逆否命题并判断真假.(1)平行四边形的对边相等;(2)菱形的对角线互相垂直平分;(3)设,若,则.分析:先将原命题改为“若p则q”,在写出其它三种命题.解:(1)原命题:若一个四边形是平行四边形,则其两组对边相等;真命题;逆命题:若一个四边形的两组对边相等,则这个四边形是平行四边形;真命题;否命题:若一个四边形不是平行四边形,则其两组
5、对边至少一组不相等;真命题;逆否命题:若一个四边形的两组对边至少一组不相等,则这个四边形不是平行四边形;真命题.(2)原命题:若一个四边形是菱形,则其对角线互相垂直平分;真命题;逆命题:若一个四边形的对角线互相垂直平分,则这个四边形是菱形;真命题;否命题:若一个四边形不是菱形,则其对角线不垂直或不平分;真命题;逆否命题:若一个四边形的对角线不垂直或不平分,则这个四边形不是菱形;真命题.(3)原命题:设,若,则;真命题;~~~~逆命题:设,若,则;假命题;否命题:设,若或,则;假命题;逆否命题:设,若,则或;真命题.点评:已知原命题写出其它的三种命题首先应把命题写成“若p则q”的
6、形式,找出其条件p和结论q,再根据四种命题的定义写出其它命题;对于含大前提的命题,在改写命题时大前提不要动;在写命题p的否定即时,要注意对p中的关键词的否定,如“且”的否定为“或”,“或”的否定为“且”,“都是”的否定为“不都是”等.例2.写出由下列各组命题构成的“p或q”,“p且q”,“非p”形式的命题,并判断真假.(1)p:2是4的约数,q:2是6的约数;(2)p:矩形的对角线相等,q:矩形的对角线互相平分;(3)p:方程的两实根的符号相同,q:方程的两实根的绝对值相等.分析:先写出三种形式命题,根据真值表判断真假.解:(1)p或q:2是4的约数或2是6的约数,真命题;p且
7、q:2是4的约数且2是6的约数,真命题;非p:2不是4的约数,假命题.(2)p或q:矩形的对角线相等或互相平分,真命题;p且q:矩形的对角线相等且互相平分,真命题;非p:矩形的对角线不相等,假命题.(3)p或q:方程的两实根的符号相同或绝对值相等,假命题;p且q:方程的两实根的符号相同且绝对值相等,假命题;非p:方程的两实根的符号不同,真命题.点评:判断含有逻辑联结词“或”,“且”,“非”的命题的真假,先要把结构弄清楚,确定命题构成的形式以及构成它们的命题p,q的真假然后根据真值表判断构成新
此文档下载收益归作者所有