欢迎来到天天文库
浏览记录
ID:23303156
大小:102.00 KB
页数:8页
时间:2018-11-06
《二次函数单元测试题及答案(用)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、二次函数单元测评(时间:60分钟,满分:100分)一、选择题(每题3分,共30分)1.下列关系式中,属于二次函数的是(x为自变量)( ) A. B. C. D.2.函数y=x2-2x+3的图象的顶点坐标是( ) A.(1,-4) B.(-1,2) C.(1,2) D.(0,3)3.抛物线y=2(x-3)2的顶点在( ) A.第一象限 B.第二象限 C.x轴上 D.y轴上4.抛物线的对称轴是( ) A.x=-2 B.x=2 C.x=-4 D.x=45.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确
2、的是( ) A.ab>0,c>0 B.ab>0,c<0 C.ab<0,c>0 D.ab<0,c<06.二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( ) A.一 B.二C.三D.四7.如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是( ) A.4+m B.m C.2m-8 D.8-2m 9.已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,
3、y3)是直线上的点,且-14、象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.16.在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.17.试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.18.已知抛物线y=x2+x+b2经过点,则y1的值是________5、_.三、解答下列各题(19、20每题9分,21、22每题10分,共38分) 20.在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k-5)x-(k+4)的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x28+1)=-8. (1)求二次函数解析式; (2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.8答案与解析:一、选择题 1.考点:二次函数概念.选A. 2. 考点:求二次函数的顶点坐标. 解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y6、=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C. 3. 考点:二次函数的图象特点,顶点坐标. 解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C. 4. 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为. 解析:抛物线,直接利用公式,其对称轴所在直线为答案选B. 5. 考点:二次函数的图象特征. 解析:由图象,抛物线开口方向向下, 抛物线对称轴在y轴右侧, 抛物线与y轴交点坐7、标为(0,c)点,由图知,该点在x轴上方,答案选C. 6. 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征. 解析:由图象,抛物线开口方向向下, 抛物线对称轴在y轴右侧,8 抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方, 在第四象限,答案选D. 7. 考点:二次函数的图象特征. 解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且
4、象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.16.在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.17.试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.18.已知抛物线y=x2+x+b2经过点,则y1的值是________
5、_.三、解答下列各题(19、20每题9分,21、22每题10分,共38分) 20.在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k-5)x-(k+4)的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x28+1)=-8. (1)求二次函数解析式; (2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.8答案与解析:一、选择题 1.考点:二次函数概念.选A. 2. 考点:求二次函数的顶点坐标. 解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y
6、=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C. 3. 考点:二次函数的图象特点,顶点坐标. 解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C. 4. 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为. 解析:抛物线,直接利用公式,其对称轴所在直线为答案选B. 5. 考点:二次函数的图象特征. 解析:由图象,抛物线开口方向向下, 抛物线对称轴在y轴右侧, 抛物线与y轴交点坐
7、标为(0,c)点,由图知,该点在x轴上方,答案选C. 6. 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征. 解析:由图象,抛物线开口方向向下, 抛物线对称轴在y轴右侧,8 抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方, 在第四象限,答案选D. 7. 考点:二次函数的图象特征. 解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且
此文档下载收益归作者所有