欢迎来到天天文库
浏览记录
ID:23283004
大小:1.01 MB
页数:31页
时间:2018-11-06
《全国各地中考数学分类解析图形的相似与位似》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、课件园http://www.kejianyuan.com第十八章图形的相似与位似15.(2012北京,15,5)已知,求代数式的值.【解析】【答案】设a=2k,b=3k,原式=【点评】本题考查了见比设份的解题方法,以及分式中的因式分解,约分等。28.2线段的比、黄金分割与比例的性质(2011山东省潍坊市,题号8,分值3)8、已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A. B.C. D.2考点:多边形的
2、相似、一元二次方程的解法解答:根据已知得四边形ABEF为正方形。因为四边形EFDC与矩形ABCD相似所以DF:EF=AB:BC即(AD-1):1=1:AD整理得:,解得由于AD为正,得到AD=,本题正确答案是B.点评:本题综合考察了一元二次方程和多边形的相似,综合性强。28.3 相似三角形的判定(2012山东省聊城,11,3分)如图,△ABC中,点D、E分别是AB、AC的中点,下列结论不正确的是()第31页(共31页)12999数学网www.12999.com课件园http://www.kejianyuan
3、.comA.BC=2DEB.△ADE∽△ABCC.D.解析:根据三角形中位线定义与性质可知,BC=2DE;因DE//BC,所以△ADE∽△ABC,AD:AB=AE:AC,即AD:AE=AB:AC,.所以选项D错误.答案:D点评:三角形的中位线平行且等于第三边的一半.有三角形中位线,可以得出线段倍分关系、比例关系、三角形相似、三角形面积之间关系等.(2012四川省资阳市,10,3分)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,
4、则四边形MABN的面积是A.B.C.D.(第10题图)【解析】由MC=6,NC=,∠C=90°得S△CMN=,再由翻折前后△CMN≌△DMN得对应高相等;由MN∥AB得△CMN∽△CAB且相似比为1:2,故两者的面积比为1:4,从而得S△CMN:S四边形MABN=1:3,故选C.【答案】C【点评】本题综合考查了直角三角形的面积算法、翻折的性质、由平行得相似的三角形相似的判定方法、相似图形的面积比等于相似比的平方等一些类知识点.知识点丰富;考查了学生综合运用知识来解决问题的能力.难度较大.(2012湖北随州,
5、14,4分)如图,点D,E分别在AB、AC上,且∠ABC=∠AED。若DE=4,AE=5,BC=8,则AB的长为______________。10第31页(共31页)12999数学网www.12999.com课件园http://www.kejianyuan.com解析::∵∠ABC=∠AED,∠BAC=∠EAD∴△AED∽△ABC,∴,DE=10答案:10点评:本题主要考查了三角形相似的判定和性质。利用两三角形的相似比,通过已知边长度求解某边长度,是常用的一种计算线段长度的方法。28.4相似三角形的性质(2
6、012重庆,12,4分)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△ABC与△DEF的面积之比为_______解析:相似三角形的周长比等于相似比,相似三角形的面积比等于相似比的平方,故可求出答案。答案:9:1点评:本题考查相似三角形的基本性质。(2012浙江省衢州,15,4分)如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为a,则□ABCD中的面积为.(用a的代数式表示)【解析】根据四边形ABCD是平行四边形,利用已知得出△DEF∽△C
7、EB,△DEF∽△ABF,进而利用相似三角形的性质分别得出△CEB、△ABF的面积为4a、9a,然后推出四边形BCDF的面积为8a即可.【答案】12a【点评】此题主要考查相似三角形的判定、性质和平行四边形的性质等知识点的理解和掌握,解答此题的关键是熟练掌握相似三角形的判定定理和性质定理.第31页(共31页)12999数学网www.12999.com课件园http://www.kejianyuan.com(2012山东省荷泽市,16(1),6)(1)如图,∠DAB=∠CAE,请你再补充一个条件________
8、____,使得△ABC∽△ADE,并说明理由.【解析】从已知条件中可得出一组角对应相等,要判定两个三角形相似,可以增加另外一组对应相等或者是这两角的两边对应成比.【答案】-----------------------------------------------------2分理由:两角对应相等,两三角形相似----------------------------------------------------
此文档下载收益归作者所有