高考第一轮复习数学:111随机事件的概率

高考第一轮复习数学:111随机事件的概率

ID:23252537

大小:426.68 KB

页数:9页

时间:2018-11-06

高考第一轮复习数学:111随机事件的概率_第1页
高考第一轮复习数学:111随机事件的概率_第2页
高考第一轮复习数学:111随机事件的概率_第3页
高考第一轮复习数学:111随机事件的概率_第4页
高考第一轮复习数学:111随机事件的概率_第5页
资源描述:

《高考第一轮复习数学:111随机事件的概率》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第十一章概率●网络体系总览●考点目标定位1.了解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.2.了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.3.了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n次独立重复试验中恰好发生k次的概率.●复习方略指南概率是新课程中新增加部分的主要内容之一.这一内容是在学习排列、组合等计数知识之后学习的,主要内容为等可能性事件的概率、互斥事件有一个发生的概率及相互独立事件同时发生的概率.这一内容从2000

2、年被列入新课程高考的考试说明.在2000,2001,2002,2003,2004这五年高考中,新课程试卷每年都有一道概率解答题,并且这五年的命题趋势是:从分值上看,从10分提高到17分,从题目的位置看,2000年为第(17)题,2001年为第(18)题,2002年为第(19)题,2003年为第(20)题即题目的位置后移,2004年两题分值增加到17分.从概率在试卷中的分数比与课时比看,在试卷中的分数比(12∶150=1∶12.5)是在数学中课时比(约为11∶330=1∶30)的2.4倍.概率试题体现了考试中心提出的

3、“突出应用能力考查”以及“突出新增加内容的教学价值和应用功能”的指导思想,在命题时,提高了分值,提高了难度,并设置了灵活的题目情境,如普法考试、串联并联系统、计算机上网、产品合格率等,所以在概率复习中要注意全面复习,加强基础,注重应用.11.1随机事件的概率●知识梳理1.随机事件:在一定条件下可能发生也可能不发生的事件.2.必然事件:在一定条件下必然要发生的事件.3.不可能事件:在一定条件下不可能发生的事件.4.事件A的概率:在大量重复进行同一试验时,事件A发生的频率总接近于某个常数,在它附近摆动,这时就把这个常数

4、叫做事件A的概率,记作P(A).由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0.5.等可能性事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成.如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是.如果某个事件A包含的结果有m个,那么事件A的概率P(A)=.6.使用公式P(A)=计算时,确定m、n的数值是关键所在,其计算方法灵活多变,没有固定的模式,可充分利用排列

5、组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.●点击双基1.(2004年全国Ⅰ,文11)从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是A.B.C.D.解析:基本事件总数为C,设抽取3个数,和为偶数为事件A,则A事件数包括两类:抽取3个数全为偶数,或抽取3数中2个奇数1个偶数,前者C,后者CC.∴A中基本事件数为C+CC.∴符合要求的概率为=.答案:C2.(2004年重庆,理11)某校高三年级举行的一次演讲比赛共有10位同学参加,其中一班有3位,二班有2位,其他班有5位

6、.若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为A.B.C.D.解析:10位同学总参赛次序A.一班3位同学恰好排在一起,而二班的2位同学没有排在一起的方法数为先将一班3人捆在一起A,与另外5人全排列A,二班2位同学不排在一起,采用插空法A,即AAA.∴所求概率为=.答案:B3.(2004年江苏,9)将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是A.B.C.D.

7、解析:质地均匀的骰子先后抛掷3次,共有6×6×6种结果.3次均不出现6点向上的掷法有5×5×5种结果.由于抛掷的每一种结果都是等可能出现的,所以不出现6点向上的概率为=,由对立事件概率公式,知3次至少出现一次6点向上的概率是1-=.答案:D4.一盒中装有20个大小相同的弹子球,其中红球10个,白球6个,黄球4个,一小孩随手拿出4个,求至少有3个红球的概率为________.解析:恰有3个红球的概率P1==.有4个红球的概率P2==.至少有3个红球的概率P=P1+P2=.答案:5.在两个袋中各装有分别写着0,1,2,

8、3,4,5的6张卡片.今从每个袋中任取一张卡片,则取出的两张卡片上数字之和恰为7的概率为________.解析:P==.答案:●典例剖析【例1】用数字1,2,3,4,5组成五位数,求其中恰有4个相同数字的概率.解:五位数共有55个等可能的结果.现在求五位数中恰有4个相同数字的结果数:4个相同数字的取法有C种,另一个不同数字的取法有C种.而这取出的五个数字共可

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。