欢迎来到天天文库
浏览记录
ID:23198611
大小:627.50 KB
页数:7页
时间:2018-11-05
《理数导数压轴题:极值点偏移问题的不等式解法》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、专业资料整理分享极值点偏移问题的不等式解法我们熟知平均值不等式:即“调和平均数”小于等于“几何平均数”小于等于“算术平均值”小于等于“平方平均值”等号成立的条件是.我们还可以引入另一个平均值:对数平均值:那么上述平均值不等式可变为:对数平均值不等式,以下简单给出证明:不妨设,设,则原不等式变为:以下只要证明上述函数不等式即可.以下我们来看看对数不等式的作用.题目1:(2015长春四模题)已知函数有两个零点,则下列说法错误的是A.B.C.D.有极小值点,且【答案】C【解析】函数导函数:有极值点,而极值,,A正确.有两个零点:,,即:①②WORD文档下载可编辑专业资料整理分
2、享①-②得:根据对数平均值不等式:,而,B正确,C错误而①+②得:,即D成立.题目2:(2011辽宁理)已知函数.若函数的图像与轴交于两点,线段中点的横坐标为,证明:【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,,,则,①②①-②得:,化简得:③而根据对数平均值不等式:③等式代换到上述不等式④根据:(由③得出)∴④式变为:∵,∴,∴在函数单减区间中,即:WORD文档下载可编辑专业资料整理分享题目3:(2010天津理)已知函数.如果,且.证明:.【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接
3、去证明第三问:设,则,,两边取对数①②①-②得:根据对数平均值不等式题目4:(2014江苏南通市二模)设函数,其图象与轴交于两点,且.证明:(为函数的导函数).【解析】根据题意:,移项取对数得:①②①-②得:,即:根据对数平均值不等式:WORD文档下载可编辑专业资料整理分享,①+②得:根据均值不等式:∵函数在单调递减∴题目5:已知函数与直线交于两点.求证:【解析】由,,可得:①,②①-②得:③①+②得:④根据对数平均值不等式利用③④式可得:由题于与交于不同两点,易得出则∴上式简化为:WORD文档下载可编辑专业资料整理分享∴WORD文档下载可编辑专业资料整理分享WORD文
4、档下载可编辑专业资料整理分享WORD文档下载可编辑
此文档下载收益归作者所有