欢迎来到天天文库
浏览记录
ID:23114395
大小:19.85 KB
页数:7页
时间:2018-11-04
《初中数学说课稿《平行四边形的判定》》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、今年,共有19所高校部分外国语专业可单独招生,这些单招的试点院校将按有关规定自行组织命题和单独考试,在全国统考前提前录取初中数学说课稿《平行四边形的判定》 一、教材分析 (一)教材所处地位和作用:《平行四边形的判定》紧接《平行四边形的性质》一节。纵观整个初中平面几何教材,它是在学生掌握了平行线、三角形及简单图形的平移和旋转等平面几何知识,并且具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习菱形、矩形及正方形等知识的基础,起着承前启后的作用。 (二)教学目标分析:根据学生已有的认识基础及本课教材的地位和作用,依据新课程
2、标准确定本课教学目标为: 知识与技能:通过探索平行四边形常用的判定条件的过程,掌握平行四边形常用的判定方法. 数学思考:1、通过观察、实验、猜想、验证、推理、交流等数学活动,发展学生的合情推理能力和动手操作能力及应用数学的意识和能力。 2、使学生掌握证明与举反例是判断一个数学命题是否成立的基本方法。 解决问题:通过平行四边形判别条件的探索过程,丰富学生从事数学活动的经验与体验,感受感受数学思考过程的条理性及解决问题的策略的多样性,发展学生的实践能力及创新意识。小语种自主招生的对象主要是外语教学质量较高的普通高中应届毕业生,考生被录取后,不得再报考其他高校,新
3、生入学后也不得转入其他专业。今年,共有19所高校部分外国语专业可单独招生,这些单招的试点院校将按有关规定自行组织命题和单独考试,在全国统考前提前录取 情感态度与价值观:培养学生合情推理能力,以及严谨的书写表达,体会几何思维的真正内涵. (三)教学重点难点分析:行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点.平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,采用启发式教学模
4、式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助. 二、教法学法分析: 鉴于教材特点及八年级学生的年龄特点、心理特征和认知水平,在教学过程中引导学生通过观察、思考、探索、交流获得知识,形成技能,在教学过程中注意创设思维情境,坚持二主方针(学生为主体,教师为主导),让学生在老师的引导下自始至终处于一种积极思维、主动探究的学习状态。使课堂洋溢着轻松和谐的气氛,探索进取的气氛,而教师在其中当好课堂教学的组织者、决策者、创造者和参与者。同时借助实物教具进
5、行演示,以增加课堂容量和教学的直观性。小语种自主招生的对象主要是外语教学质量较高的普通高中应届毕业生,考生被录取后,不得再报考其他高校,新生入学后也不得转入其他专业。今年,共有19所高校部分外国语专业可单独招生,这些单招的试点院校将按有关规定自行组织命题和单独考试,在全国统考前提前录取 本堂课立足于学生的“学”,要求学生多动手,多观察,让学生经历发现,说明,完善的过程,培养其操作说理、观察归纳的能力。从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,
6、合作交流的方法组织教学,使学生真正成为教学的主体,体验参与的乐趣,成功的喜悦。 三、教学程序设计 (一)、回顾交流,逆向思索 在复习了平行四边形定义和性质,提出判定平行四边形的方法引导学生探究。 【学法分析】新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。 设计意图:从旧知识问题引入新课,提出具有启发性的问题,能够调动学生的积极思维,激起学生的学习欲望,也为下面探究平行四边形的
7、判定方法打下基础。著名教育家苏霍姆林斯基曾经说过:如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲惫。小语种自主招生的对象主要是外语教学质量较高的普通高中应届毕业生,考生被录取后,不得再报考其他高校,新生入学后也不得转入其他专业。今年,共有19所高校部分外国语专业可单独招生,这些单招的试点院校将按有关规定自行组织命题和单独考试,在全国统考前提前录取 (二)探索方法,发现新知 ⒈提出问题后我安排了如下两组探索题 探索一、将两长两短的四根细木条(或用硬纸片),用小钉铰合
此文档下载收益归作者所有