欢迎来到天天文库
浏览记录
ID:23038326
大小:158.00 KB
页数:6页
时间:2018-11-03
《因式分解之十字相乘法专项练习题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、十字相乘法进行因式分解学生姓名:刘家艺【基础知识精讲】(1)理解二次三项式的意义;(2)理解十字相乘法的根据;(3)能用十字相乘法分解二次三项式;(4)重点是掌握十字相乘法,难点是首项系数不为1的二次三项式的十字相乘法.【重点难点解析】1.二次三项式多项式,称为字母x的二次三项式,其中称为二次项,bx为一次项,c为常数项.例如,和都是关于x的二次三项式.在多项式中,如果把y看作常数,就是关于x的二次三项式;如果把x看作常数,就是关于y的二次三项式.在多项式中,把ab看作一个整体,即,就是关于ab的二次
2、三项式.同样,多项式,把x+y看作一个整体,就是关于x+y的二次三项式.十字相乘法是适用于二次三项式的因式分解的方法.2.十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(ax+b)(cx+d)竖式乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式,如果能把常数项q分解成两个因数a,b的积,并且a+b为一次项系数p,那么它就可以运用公式分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因
3、式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式(a,b,c都是整数且a≠0)来说,如果存在四个整数,使,,且,那么它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定.学习时要注意符号的规律.为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项
4、为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同.用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.如:3.因式分解一般要遵循的步骤多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用
5、口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”.【典型热点考题】例1把下列各式分解因式:(1);(2).点悟:(1)常数项-15可分为3×(-5),且3+(-5)=-2恰为一次项系数;(2)将y看作常数,转化为关于x的二次三项式,常数项可分为(-2y)(-3y),而(-2y)+(-3y)=(-5y)恰为一次项系数.解:(1);(2).例2把下列各式分解因式:(1);(2).点悟:我们要把多项式分解成形如的形式,这里,而.解:(1);(2
6、).点拨:二次项系数不等于1的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性.例3把下列各式分解因式:(1);(2);(3).点悟:(1)把看作一整体,从而转化为关于的二次三项式;(2)提取公因式(x+y)后,原式可转化为关于(x+y)的二次三项式;(3)以为整体,转化为关于的二次三项式.解:(1)=(x+1)(x-1)(x+3)(x-3).(2)=(x+y)[(x+y)-1][7(x
7、+y)+2]=(x+y)(x+y-1)(7x+7y+2).(3)点拨:要深刻理解换元的思想,这可以帮助我们及时、准确地发现多项式中究竟把哪一个看成整体,才能构成二次三项式,以顺利地进行分解.同时要注意已分解的两个因式是否能继续分解,如能分解,要分解到不能再分解为止.因式分解之十字相乘法专项练习题(1)a2-7a+6;(2)8x2+6x-35;(3)18x2-21x+5;(4)20-9y-20y2;(5)2x2+3x+1;(6)2y2+y-6;(7)6x2-13x+6;(8)3a2-7a-6;(9)6x
8、2-11x+3;(10)4m2+8m+3;(11)10x2-21x+2;(12)8m2-22m+15;(13)4n2+4n-15;(14)6a2+a-35;(15)5x2-8x-13;(16)4x2+15x+9;(17)15x2+x-2;(18)6y2+19y+10;(19)2(a+b)2+(a+b)(a-b)-6(a-b)2;(20)7(x-1)2+4(x-1)-20;14.把下列各式分解因式:(1);(2);(3);(4);(5);(6).15.把下
此文档下载收益归作者所有