纳维-斯托克斯方程

纳维-斯托克斯方程

ID:23026740

大小:292.50 KB

页数:10页

时间:2018-11-03

纳维-斯托克斯方程_第1页
纳维-斯托克斯方程_第2页
纳维-斯托克斯方程_第3页
纳维-斯托克斯方程_第4页
纳维-斯托克斯方程_第5页
资源描述:

《纳维-斯托克斯方程》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、纳维-斯托克斯方程纳维-斯托克斯方程(Navier-Stokesequations),以克劳德-路易·纳维(Claude-LouisNavier)和乔治·加布里埃尔·斯托克斯命名,是一组描述像液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率(加速度)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力)以及引力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。他们是最有用的一组方程之一,因为它们描述了大量对学术和经济有用的现象的物理过程。它们可以用于模拟天气,洋流,管道中的水流,星系中恒

2、星的运动,翼型周围的气流。它们也可以用于飞行器和车辆的设计,血液循环的研究,电站的设计,污染效应的分析,等等。纳维-斯托克斯方程依赖微分方程来描述流体的运动。这些方程,和代数方程不同,不寻求建立所研究的变量(譬如速度和压力)的关系,而是建立这些量的变化率或通量之间的关系。用数学术语来讲,这些变化率对应于变量的导数。这样,最简单情况的0粘滞度的理想流体的纳维-斯托克斯方程表明加速度(速度的导数,或者说变化率)是和内部压力的导数成正比的。这表示对于给定的物理问题的纳维-斯托克斯方程的解必须用微积分的帮助才能取得。实用上,只有最简单的情况才能用这种方法解答,而它们的确切答案是已知的。这些情况通常

3、涉及稳定态(流场不随时间变化)的非湍流,其中流体的粘滞系数很大或者其速度很小(小的雷诺数)。对于更复杂的情形,例如厄尔尼诺这样的全球性气象系统或机翼的升力,纳维-斯托克斯方程的解必须借助计算机。这本身是一个科学领域,称为计算流体力学。虽然湍流是日常经验中就可以遇到的,但这类问题极难求解。一个$1,000,000的大奖由克雷数学学院于2000年5月设立,奖给对于能够帮助理解这一现象的数学理论作出实质性进展的任何人。目录·1基本假设o1.1随体导数o1.2守恒定律§1.2.1连续性方程§1.2.2动量守恒·2方程组o2.1一般形式§2.1.1方程组的形式§2.1.2闭合问题·3特殊形式o3.1

4、牛顿流体o3.2宾汉(Bingham)流体o3.3幂律流体o3.4不可压缩流体·4参看·5参考文献·6外部链接基本假设在解释纳维-斯托克斯方程的细节之前,我们必须首先对流体的性质作几个假设。第一个假设是流体是连续的。这强调它不包含形成内部的空隙,例如,溶解的气体的气泡,而且它不包含雾状粒子的聚合。另一个必要的假设是所有涉及到的场,全部是可微的,例如压强,速度,密度,温度,等等。该方程从质量,动量,和能量的守恒的基本原理导出。对此,有时必须考虑一个有限的任意体积,称为控制体积,在其上这些原理很容易应用。该有限体积记为,而其表面记为。该控制体积可以在空间中固定,也可能随着流体运动。这会导致一些

5、特殊的结果,我们将在下节看到。随体导数运动流体的属性的变化,譬如大气中的风速的变化,可以有两种不同的方法来测量。可以用气象站或者气象气球上的风速仪来测量。显然,第一种情况下风速仪测量的速度是所有运动的粒子经过一个固定点的速度,而第二种情况下,仪器在测量它随着流体运动时速度的变化。同样的论证对于密度、温度、等等的测量也是成立的。因此,当作微分时必须区分两种情况。第一种情况称为空间导数或者欧拉导数。第二种情况称为实质或拉格朗日导数。例子请参看随体导数条目。随体导数定义为算子(operator):其中是流体的速度。方程右边的第一项是普通的欧拉导数(也就是在静止参照系中的导数)而第二项表示由于流体

6、的运动带来的变化。这个效应称为移流(advection)。L的守恒定律在一个控制体积上的积分形式是:因为Ω是共动的,它随着时间而改变,所以我们不能将时间导数和积分简单的交换。因为这个表达式对于所有成立,它可以简化为:对于不是密度的量(因而它不必在空间中积分),给出了正确的共动时间导数。守恒定律主条目:守恒定律NS方程可以从守恒定律通过上述变换导出,并且需要用状态定律来闭合。在控制体积上,使用上述变换,下列的量视为守恒:·质量·能量·动量·角动量连续性方程质量的守恒写作:其中是流体的密度。在不可压缩流体的情况不是时间或空间的函数。方程简化为:动量守恒动量守恒写作:注意是一个张量,代表张量积。

7、我们可以进一步简化,利用连续性方程,这成为:我们可以认出这就是通常的F=ma。方程组一般形式方程组的形式纳维-斯托克斯方程的一般形式是:关于动量守恒。张量代表施加在一个流体粒子上的表面力(应力张量)。除非流体是由象旋涡这样的旋转自由度组成,是一个对称张量。一般来讲,我们有如下形式:其中是法向约束,而是切向约束。迹在流体处于平衡态时为0。这等价于流体粒子上的法向力的积分为0。我们再加上连续性方程:对于处于平衡的液体,的迹是

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。