欢迎来到天天文库
浏览记录
ID:22981040
大小:959.00 KB
页数:9页
时间:2018-11-02
《高中数学最全必修一函数性质详解与知识点总结与题型详解》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、WORD格式可编辑(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射集合A,B是平面直角坐标系上的两个点集,给定从A→B的映射f:(x,y)→(x2+y2,xy),求象(5,2)的原象.3.已知集合A到集合B={0,1,2,3}的映射f:x→,则集合A中的元素最多有几个?写出元素最多时的集合A.2、函数。构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件
2、:三要素有两个相同1、下列各对函数中,相同的是()A、B、C、D、f(x)=x,2、给出下列四个图形,其中能表示从集合M到集合N的函数关系的有()A、0个B、1个C、2个D、3个xxxx1211122211112222yyyy3OOOO二、函数的解析式与定义域函数解析式的七种求法待定系数法:在已知函数解析式的构造时,可用待定系数法。例1设是一次函数,且,求配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。例
3、2已知,求的解析式三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。与配凑法一样,要注意所换元的定义域的变化。例3已知,求专业技术资料分享WORD格式可编辑四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。例4已知:函数的图象关于点对称,求的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。例5设求例6设为偶函数,为奇函数,又试求的解析式六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可
4、以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。例7已知:,对于任意实数x、y,等式恒成立,求七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。例8设是上的函数,满足,对任意的自然数都有,求1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;6.(05江苏卷)函数的定义域为
5、2求函数定义域的两个难点问题(1)(2)例2设,则的定义域为__________变式练习:,求的定义域。三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求
6、其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数1.(直接法)2.3.(换元法)4.(Δ法)5.6.(分离常数法)①②专业技术资料分享WORD格式可编辑7.(单调性)8.①,②9.(图象法)10.(对勾函数)11.(几何意义)四.函数的奇偶性1.定义:2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称, y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×
7、偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系1已知函数是定义在上的偶函数.当时,,则当时,.2已知定义域为的函数是奇函数。(Ⅰ)求的值;(Ⅱ)若对任意的,不等式恒成立,求的取值范围;3已知在(-1,1)上有定义,且满足证明:在(-1,1)上为奇函数;4若奇函数满足,,则_______五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x
8、)与g(x)的单调性相同,则在M上是增函数。2例函数对任意的,都有,并且当时,,⑴求证:在上是增函数;⑵若,解不等式3函数的单调增区间是________4(高考真题)已知是上的减函数,那么的取值范围是(A)(B)(C)(D)专业技术资料分享WORD格式可编辑一:函数单调性的证明1.取值2,作差3,定号4,结论二:函数单调性的判定,求单调区间()()三:函数单调性的应用1.比较大小例:如果函数对任意实数都有,那么A、B、C、C、2.解不等式例:定义在(-1,1)上的函数
此文档下载收益归作者所有