欢迎来到天天文库
浏览记录
ID:22949664
大小:2.62 MB
页数:8页
时间:2018-11-02
《《相似三角形的判定》教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《相似三角形的判定》教案课标要求1.掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例;2.了解相似三角形的判定定理:两角分别相等的两个三角形相似、两边成比例且夹角相等的两个三角形相似、三边成比例的两个三角形相似;3.了解相似三角形判定定理的证明.教学目标知识与技能:1.了解相似三角形及相似比的概念;2.掌握平行线分线段成比例的基本事实及推论;3.掌握相似三角形判定方法:平行线法、三边法、两边夹一角法、两角法;4.进一步熟悉运用相似三角形的判定方法解决相关问题.过程与方法:类比全等三角形的判定方法探究相似
2、三角形的判定,体会特殊与一般的关系,从而掌握相似三角形的判定方法.情感、态度与价值观:发展学生的探究能力,渗透类比思想,体会特殊与一般的关系.教学重点掌握相似三角形的概念,能运用相似三角形的判定方法判定两个三角形相似.教学难点探究三角形相似的条件,并运用相似三角形的判定定理解决问题.教学流程一、知识迁移类比相似多边形的相关知识回答下面的问题:1.对应角相等,对应边成比例的两个三角形,叫做相似三角形.2.相似三角形的对应角相等,对应边成比例.师介绍:“相似”用符号“∽”来表示,读作“相似于”,2题可以用符号表示为∵△
3、ABC∽△DEF,∴A=∠D,∠B=∠E,∠C=∠F;.如何判断两个三角形相似呢?反过来∵A=∠D,∠B=∠E,∠C=∠F;∴△ABC∽△DEF.师介绍:△ABC与△DEF的相似比为k,△DEF与△ABC的相似比为.追问:当k=1,这两个三角形有怎样的关系?引出课题:如何判断两个三角形相似呢?有没有更简单的方法?回顾学习三角形全等时,我们知道,除了可以验证所有的角和边分别相等来判定两个三角形全等外,还有判定的简便方法(SSS,SAS,ASA,AAS).类似地,判定两个三角形相似时,是不是也存在简便的判定方法呢?二、
4、探究归纳(一)平行线分线段成比例探究1:如图,任意画两条直线l1,l2,再画三条与l1,l2都相交的平行线l3,l4,l5.分别度量l3,l4,l5在l1上截得的两条线段AB,BC和在l2上截得的两条线段DE,EF的长度,与相等吗?任意平移l5.与还相等吗?当l3//l4//l5时,有,,,等.基本事实:两条直线被一组平行线所截,所得的对应线段成比例.迁移:将基本事实应用到三角形中,当DE//BC时,有,,,等.结论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.应用:如图AB//CD/
5、/EF,AF与BE相交于点G,AG=2,GD=1,DF=5,求的值.(二)相似三角形的判定思考:如图1,在△ABC中,DE∥BC,且DE分别交AB,AC于点D,E,△ADE与△ABC有什么关系?图1图2分析:用定义证明△ADE∽△ABC,需要具备的条件:角:∠A=∠A,∠ADE=∠B,∠AED=∠C;边:.如何证明呢?判定三角形相似的定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.变式:如图2,DE∥BC,且DE分别交BA,CA的延长线于点D,E,△ABC与△ADE相似吗?符号语言:∵DE
6、//BC∴△ABC∽△ADE应用:如图,在△ABC中,DE∥BC,且AD=3,DB=2.写出图中的相似三角形,并指出其相似比.探究2:任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍.度量这两个三角形的角,它们相等吗?这两个三角形相似吗?与同学交流一下,看看是否有同样的结论.在△ABC与△A′B′C′中,如果满足,求证:△ABC∽△A′B′C′.判定三角形相似的定理一:三边成比例的两个三角形相似.符号语言:类比:对于在△ABC与△A′B′C′中,如果,这两个三角形一定相似吗?判定三角形相似的
7、定理二:两边成比例且夹角相等的两个三角形相似.符号语言:思考:对于在△ABC与△A′B′C′中,如果,这两个三角形一定相似吗?试着画画看.应用:例1根据下列条件,判断△ABC和△A′B′C′是否相似,并说明理由:(1)AB=4cm,BC=6cm,AC=8cm,A′B′=12cm,B′C′=18cm,A′C′=24cm.(2)∠A=120°,AB=7cm,AC=14cm,∠A′=120°,A′B′=3cm,A′C′=6cm.追问:这两个三角形的相似比是多少?练习:判断图中的两个三角形是否相似.为什么?探究3:观察两副
8、三角尺,其中有同样两个锐角(30°与60°,或45°与45°)的两个三角尺大小可能不同,它们相似吗?试着说说理由.迁移:对于在△ABC与△A′B′C′中,如果,这两个三角形一定相似吗?判定三角形相似的定理三:两角分别相等的两个三角形相似.符号语言:应用:例2如图,Rt△ABC中,∠C=90°,AB=10,AC=8.E是AC上一点,AE=5,ED⊥AB,垂足为
此文档下载收益归作者所有