七大函数,七大性质

七大函数,七大性质

ID:22865045

大小:1.80 MB

页数:18页

时间:2018-11-01

七大函数,七大性质_第1页
七大函数,七大性质_第2页
七大函数,七大性质_第3页
七大函数,七大性质_第4页
七大函数,七大性质_第5页
七大函数,七大性质_第6页
七大函数,七大性质_第7页
七大函数,七大性质_第8页
七大函数,七大性质_第9页
七大函数,七大性质_第10页
资源描述:

《七大函数,七大性质》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、word资料下载可编辑七大函数——1、一次函数2、二次函数3、反比例函数4、指数函数5、对数函数6、幂函数7、三角函数七大性质——1、定义域2、值域3、最值4、周期性5、奇偶性6、单调性7、对称性壹@一次函数(正比例函数)1、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。特别地,当b=0时,即:y=kx(k为常数,k≠0)则此时称y是x的正比例函数。2、一次函数的性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-

2、b/k,0)正比例函数的图像总是过原点。(3)k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。当b=0时,直线通过原点。(4)特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。3、一次函数和正比例函数的图象和性质贰@二次函数专业技术资料word资料下载可编辑1.函数叫做一元二次函数。其图象是

3、一条抛物线。2.根与系数的关系-韦达定理(1)若一元二次方程中,两根为,。求根公式,补充公式。韦达定理,。(2)以,为两根的方程为(3)用韦达定理分解因式3.任何一个二次函数都可配方为顶点式:,性质如下:(1)图象的顶点坐标为,对称轴是直线。(2)最大(小)值①当,函数图象开口向上,有最小值,,无最大值。②当,函数图象开口向下,有最大值,,无最小值。(3)当,函数在区间上是减函数,在上是增函数。当,函数在区间上是减函数,在上是增函数。4.二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式专业技术资料word资料下载

4、可编辑二次函数的图象一元二次方程的根有两个相异实数根有两个相等实数根没有实数根不等式的解集叁@反比例函数1、定义:一般地,形如(k为常数,)的函数称为反比例函数,它可以从以下几个方面来理解:(1)x是自变量,y是x的反比例函数;(2)自变量x的取值范围是的一切实数,函数值的取值范围是;(3)反比例函数有三种表达式:①(),②(),③(定值)()。(4)函数()与()是等价的,所以当y是x的反比例函数时,x也是y的反比例函数。2、反比例函数解析式的特征: 反比例函数()的符号图像定义域和值域,;即(—∞,0)U(0,+∞),即(—∞,0

5、)U(0,+∞)单调性图像的两个分支分别在第一、第三象限,在每个象限内,y随x的增大而减小。图像的两个分支分别在第二、第四象限,在每个象限内,y随x的增大而增大。肆@指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.2.实数指数幂的运算性质专业技术资料word资料下载可编辑(1)·(2)(3)均满足.(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数,其中定义域为x∈R.2、指数函数的图象和性质条件a>10

6、在R上单调递减奇偶性非奇非偶函数非奇非偶函数特性过定点(0,1)过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;伍@对数函数(一)对数1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式);2.两个重要对数:常用对数:以10为底的对数;自然对数:以无理数为底的对数.(二)对数的运算性质如果,且,,,那么:·+;-;.注意:换底公式(,且;,且;).利用换底公式推导下面的结论(1);(2).(三)对

7、数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:,都不是对数函数,而只能称其为对数型函数.2、对数函数的性质:专业技术资料word资料下载可编辑条件a>10

8、的函数称为幂函数,其中为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)当时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。