《自动控制原理》课后习题答案

《自动控制原理》课后习题答案

ID:22689380

大小:1.17 MB

页数:24页

时间:2018-10-30

《自动控制原理》课后习题答案_第1页
《自动控制原理》课后习题答案_第2页
《自动控制原理》课后习题答案_第3页
《自动控制原理》课后习题答案_第4页
《自动控制原理》课后习题答案_第5页
资源描述:

《《自动控制原理》课后习题答案》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、第一章干扰量掌握自动控制系统的一般概念(控制方式,分类,性能要求)6.(1)结构框图:实际温度减速器调压器加热器电动机放大器比较器UgUUdnUcUUr热电偶给定输入量:给定值Ug被控制量:加热炉的温度扰动量:加热炉内部温度不均匀或坏境温度不稳定等外部因素被控制对象:加热器控制器:放大器、发动机和减速器组成的整体(2)工作原理:给定值输入量Ug和反馈量Ur通过比较器输出U,经放大器控制发动机的转速n,再通过减速器与调压器调节加热器的电压U来控制炉温。TUrUUdnUcUT7.(1)结构框图略给定输入量:输入

2、轴θr被控制量:输出轴θc扰动量:齿轮间配合、负载大小等外部因素被控制对象:齿轮机构控制器:液压马达(2)工作原理:θcUeUgiθmθc第二章掌握系统微分方程,传递函数(定义、常用拉氏变换),系统框图化简;1.(a)将(2)式带入(1)式得:拉氏变换可得整理得1.(b)将(2)式代入(1)式得拉氏变换得整理得2.1)微分方程求解法中间变量为,及其一阶导数,直接化简比较复杂,可对各微分方程先做拉氏变换移项得可得2)复阻抗法解得:3.分别以m2,m1为研究对象(不考虑重力作用)中间变量含一阶、二阶导数很难直接

3、化简,故分别做拉氏变换消除Y1中间变量10.系统框图化简:11.系统框图化简:第三章掌握时域性能指标,劳斯判据,掌握常用拉氏变换-反变换求解时域响应,误差等2.(1)求系统的单位脉冲响应2.(2)求系统的单位阶跃响应,和单位斜坡响应9.解:由图可知该系统的闭环传递函数为又因为:联立1、2、3、4得所以10.解:由题可知系统闭环传递函数为当k=10时,=10rad/s;=0.5;所以有当k=20时,=14.14rad/s;=0.35;所以有当0

4、调整时间不随k值增大而变化;当k>2.5时,系统为欠阻尼,超调量%随着K增大而增大,和峰值时间随着K增大而减小;其中调整时间不随k值增大而变化;14.(1)解,由题可知系统的闭环传递函数为14.(2)解,由题可知系统的闭环传递函数为20.解:由题可知系统的开环传递函数为当输入为单位阶跃信号时,系统误差的拉氏变换为25.解:由题可知系统的开环传递函数为当输入为给定单位阶跃信号时,系统在给定信号下误差的拉氏变换为当输入为扰动信号时,系统扰动信号下误差的拉氏变换为第四章根轨迹法掌握轨迹的概念、绘制方法,以及分析控

5、制系统4-2(2)G(s)=;解:分析题意知:由s(0.2s+1)(0.5s+1)=0得开环极点s1=0,s2=-2,s3=-5。(1)根轨迹的分支数等于3。(2)三条根轨迹的起点分别是实轴上的(0,j0),(-2,j0),(-5,j0),终止点都是无穷远处。(3)根轨迹在实轴上的轨迹段:[-2,0]段和[-∞,-5]段。(4)根轨迹的渐近线:由n=3,m=0渐近线与实轴的交点(5)根轨迹与实轴的分离点:A(s)=s(0.2s+1)(0.5s+1)B(s)=1由解得:s1=s2=(舍去)根轨迹如图所示σjw

6、(3)G(s)=解:分析题意知:由s(s+2)(s+3)=0得开环极点s1=0,s2=-2,s3=-3。由k(s+2)=0得开环零点为s=-2。(1)根轨迹的分支数等于3。(2)三条根轨迹的起点分别是实轴上的(0,j0),(-2,j0),(-5,j0),终止是(-2,j0)和无穷远处。(3)根轨迹在实轴上的轨迹段:[-3,0]段。(4)根轨迹的渐近线:由n=3,m=1渐近线与实轴的交点(5)根轨迹与实轴的分离点:A(s)=s(s+2)(s+3)B(s)=k(s+2)由解得:s1=s2=-2(舍去)s3=其中

7、s1=s2=-2s是因为闭环特征方程的根恒有一根s=-2分离点取s=根轨迹如图所示σjw4-3G(s)H(s)=;解:分析题意知:由s2(s+2)(s+5)=0得开环极点s1=s2=0,s3=-2,s4=-5。(1)根轨迹的分支数等于4。(2)三条根轨迹的起点分别是实轴上的(0,j0),(-2,j0),(-5,j0),终止点都是无穷远处。(3)根轨迹在实轴上的轨迹段:[-5,-2]段。(4)根轨迹的渐近线:由n=4m=0渐近线与实轴的交点(5)根轨迹与实轴的分离点:A(s)=s2(s+2)(s+5)B(s)

8、=1由解得:s1=s2=-4s3=(舍去)根轨迹如图所示σjw4-4(2)G(s)=;解:分析题意知:由s(0.1s+1)(s+1)=0得开环极点s1=0,s2=-1,s3=-10。(1)根轨迹的分支数等于3。(2)三条根轨迹的起点分别是实轴上的(0,j0),(-1,j0),(-10,j0),终止点都是无穷远处。(3)根轨迹在实轴上的轨迹段:[-1,0]段和[-∞,-10]段。(4)根轨迹的渐近线:由n=3,m=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。