4、调整时间不随k值增大而变化;当k>2.5时,系统为欠阻尼,超调量%随着K增大而增大,和峰值时间随着K增大而减小;其中调整时间不随k值增大而变化;14.(1)解,由题可知系统的闭环传递函数为14.(2)解,由题可知系统的闭环传递函数为20.解:由题可知系统的开环传递函数为当输入为单位阶跃信号时,系统误差的拉氏变换为25.解:由题可知系统的开环传递函数为当输入为给定单位阶跃信号时,系统在给定信号下误差的拉氏变换为当输入为扰动信号时,系统扰动信号下误差的拉氏变换为第四章根轨迹法掌握轨迹的概念、绘制方法,以及分析控
5、制系统4-2(2)G(s)=;解:分析题意知:由s(0.2s+1)(0.5s+1)=0得开环极点s1=0,s2=-2,s3=-5。(1)根轨迹的分支数等于3。(2)三条根轨迹的起点分别是实轴上的(0,j0),(-2,j0),(-5,j0),终止点都是无穷远处。(3)根轨迹在实轴上的轨迹段:[-2,0]段和[-∞,-5]段。(4)根轨迹的渐近线:由n=3,m=0渐近线与实轴的交点(5)根轨迹与实轴的分离点:A(s)=s(0.2s+1)(0.5s+1)B(s)=1由解得:s1=s2=(舍去)根轨迹如图所示σjw
6、(3)G(s)=解:分析题意知:由s(s+2)(s+3)=0得开环极点s1=0,s2=-2,s3=-3。由k(s+2)=0得开环零点为s=-2。(1)根轨迹的分支数等于3。(2)三条根轨迹的起点分别是实轴上的(0,j0),(-2,j0),(-5,j0),终止是(-2,j0)和无穷远处。(3)根轨迹在实轴上的轨迹段:[-3,0]段。(4)根轨迹的渐近线:由n=3,m=1渐近线与实轴的交点(5)根轨迹与实轴的分离点:A(s)=s(s+2)(s+3)B(s)=k(s+2)由解得:s1=s2=-2(舍去)s3=其中
7、s1=s2=-2s是因为闭环特征方程的根恒有一根s=-2分离点取s=根轨迹如图所示σjw4-3G(s)H(s)=;解:分析题意知:由s2(s+2)(s+5)=0得开环极点s1=s2=0,s3=-2,s4=-5。(1)根轨迹的分支数等于4。(2)三条根轨迹的起点分别是实轴上的(0,j0),(-2,j0),(-5,j0),终止点都是无穷远处。(3)根轨迹在实轴上的轨迹段:[-5,-2]段。(4)根轨迹的渐近线:由n=4m=0渐近线与实轴的交点(5)根轨迹与实轴的分离点:A(s)=s2(s+2)(s+5)B(s)
8、=1由解得:s1=s2=-4s3=(舍去)根轨迹如图所示σjw4-4(2)G(s)=;解:分析题意知:由s(0.1s+1)(s+1)=0得开环极点s1=0,s2=-1,s3=-10。(1)根轨迹的分支数等于3。(2)三条根轨迹的起点分别是实轴上的(0,j0),(-1,j0),(-10,j0),终止点都是无穷远处。(3)根轨迹在实轴上的轨迹段:[-1,0]段和[-∞,-10]段。(4)根轨迹的渐近线:由n=3,m=