欢迎来到天天文库
浏览记录
ID:22687147
大小:128.01 KB
页数:15页
时间:2018-10-30
《《ahp层次分析法》word版》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、层次分析法出自MBA智库百科(http://wiki.mbalib.com/)层次分析法(Theanalytichierarchyprocess,简称AHP),也称层级分析法什么是层次分析法 层次分析法(Theanalytichierarchyprocess)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、
2、运输、农业、教育、人才、医疗和环境等领域。 层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。不妨用假期旅游为例:假如有3个旅游胜地A、B、C供你选择,你会根据诸如景色、费用和居住、饮食、旅途条件等一些准则去反复比较这3个候选地点.首先,你会确定这些准则在你的心目中各占多大比重,如果你经济宽绰、醉心旅游,自然分别看重景色条件,而平素俭朴或手头拮据的人则会优先考虑费用,中老年旅游者还会对居住、饮食等条件寄以较大关注。其次,你会就每一个准则将3个地点进行对比,譬如A景色最好,B次之;B费用最低,C次之;C居住等条件
3、较好等等。最后,你要将这两个层次的比较判断进行综合,在A、B、C中确定哪个作为最佳地点。层次分析法的基本步骤15 1、建立层次结构模型。在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。当准则过多时(譬如多于9个)应进一步分解出子准则层。 2、构造成对比较阵。从层次结构模型的第2层开始,对于从属于(或影响
4、)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构追成对比较阵,直到最下层。 3、计算权向量并做一致性检验。对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构追成对比较阵。 4、计算组合权向量并做组合一致性检验。计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。层次分析法的优点15运用层次
5、分析法有很多优点,其中最重要的一点就是简单明了。层次分析法不仅适用于存在不确定性和主观信息的情况,还允许以合乎逻辑的方式运用经验、洞察力和直觉。也许层次分析法最大的优点是提出了层次本身,它使得买方能够认真地考虑和衡量指标的相对重要性。建立层次结构模型 将问题包含的因素分层:最高层(解决问题的目的);中间层(实现总目标而采取的各种措施、必须考虑的准则等。也可称策略层、约束层、准则层等);最低层(用于解决问题的各种措施、方案等)。把各种所要考虑的因素放在适当的层次内。用层次结构图清晰地表达这些因素的关系。 〔例2〕选拔干部模型 对三
6、个干部候选人y1、y2、y3,按选拔干部的五个标准:品德、才能、资历、年龄和群众关系,构成如下层次分析模型:假设有三个干部候选人y1、y2、y3,按选拔干部的五个标准:品德,才能,资历,年龄和群众关系,构成如下层次分析模型 15构造成对比较矩阵 比较第i个元素与第j个元素相对上一层某个因素的重要性时,使用数量化的相对权重aij来描述。设共有n个元素参与比较,则称为成对比较矩阵。 成对比较矩阵中aij的取值可参考Satty的提议,按下述标度进行赋值。aij在1-9及其倒数中间取值。·aij=1,元素i与元素j对上一层次因素的重要性相同
7、;·aij=3,元素i比元素j略重要;·aij=5,元素i比元素j重要;·aij=7,元素i比元素j重要得多;·aij=9,元素i比元素j的极其重要;·aij=2n,n=1,2,3,4,元素i与j的重要性介于aij=2n−1与aij=2n+1之间;·,n=1,2,...,9,当且仅当aji=n。 成对比较矩阵的特点:。(备注:当i=j时候,aij=1)15 对例2,选拔干部考虑5个条件:品德x1,才能x2,资历x3,年龄x4,群众关系x5。某决策人用成对比较法,得到成对比较阵如下: a14=5表示品德与年龄重要性之比为5,即决策人认
8、为品德比年龄重要。作一致性检验 从理论上分析得到:如果A是完全一致的成对比较矩阵,应该有 aijajk=aik。 但实际上在构造成对比较矩阵时要求满足上述众多等式是不可能的。因此退而要求
此文档下载收益归作者所有