欢迎来到天天文库
浏览记录
ID:22534373
大小:252.00 KB
页数:15页
时间:2018-10-30
《注重学生思维参与和感悟的函数概念教学》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、注重学生思维参与和感悟的函数概念教学章建跃陶维林(人民教育出版社中数室100081南京师范大学附属中学210003)编者按函数与函数概念的教学是大家熟悉的,但本文出的是从教学设计的立意入手,凸显函数概念本质、分析学生认知基础]如何更好地把握教学规律,以问题串为线索的教学过程设计(尤其是例子的选择和提出的相关问题)、注重学生的思维参与和感悟的教学过程设计。特别是本文第二部分“课后与任课教师的互动交流”对于我们应该如何去思考和进行函数概念的教学会有很好的启迪。第三部分“在实践基础上理性反思”对于如何进行教学设计]提高自身把握中学数学教学的规律的能力具有理论价值和现实意义。
2、为了推进高中课标教材的实验工作,使广大教师更好地理解新教材的编写意图,把握新教材的教学,提高教学效益,我们组织实施了“中学数学核心概念、思想方法结构体系及教学设计的理论与实践”课题研究,就高中数学中的一些核心概念的教学开展深入研究,并以“人教A版”高中数学课标教材为蓝本,进行课堂教学实践研究,制作成课例光盘供广大教师观摩.众所周知,函数概念是中学数学中的最重要概念之一,函数的思想和方法贯穿高中数学课程的始终.理解函数概念及由其反映的数学思想方法,学会用函数的观点和方法解决数学问题和现实问题,是高中阶段最重要的数学学习任务之一.因此,搞好函数概念的教学至关重要.另一方面
3、,函数概念因为其高度的抽象性而成为最难把握的概念之一,无论是教师的教还是学生的学,都存在很大困难.有鉴于此,我们选择了“函数概念”单元,内容包括函数的概念、表示和性质(单调性),请“人教A版”高中数学课标实验教材作者、南京师范大学附中陶维林老师授课,制作成一个关于“函数概念”单元的完整课例(三课时).本文是对函数概念这节课的教学如何注重学生思维参与和感悟,从课堂教学设计、课堂教学反思与评析等几个方面介绍这一实践活动的反思和总结(“函数的表示”和“函数的性质”两课的教学设计,有兴趣的读者可以从人教网的“高中数学”栏目中查阅),敬请读者批评指正.第一部分教学设计一、基于教
4、材编写意图的教学设计立意为了更好地说明问题,我们这里结合“人教A版”中函数单元的教材编写意图,阐述本教学设计的立意.(一)对本单元教学内容的总体认识高中的函数学习在初中已学的“变量说”基础上展开,函数定义采用“对应说”,引进抽象符号f(x)表示函数;较全面地学习函数的表示与性质;强调函数15是刻画现实事物变化规律的一种数学模型,因此强调函数的背景、思想和应用;强调与方程、不等式的联系,注重用函数观点理解和解决方程、不等式的有关问题;用导数为工具研究函数性质,使思想方法和研究手段都上升到一个全新高度.具体安排强调螺旋上升,先从一般性角度研究函数概念,使学生在宏观上了解函
5、数的内容和方法,起到先行组织者的作用;然后通过基本初等函数的学习,以具体函数为载体,感受建立函数模型的过程与方法,体会函数在数学和其他学科中的应用,学会用函数思想解决简单实际问题.定义抽象、符号抽象、具体函数类型多复杂性提高(连续的、离散的)、相关知识的联系性增强、用更多的工具(实数运算、导数)讨论函数性质等是高中阶段函数学习的特点.特别是,引入具有一般性的抽象函数符号f(x),使学生能通过建立模型刻画现实问题的数量关系,并通过讨论函数的性质而获得现实问题的解释,认识和把握现实问题的规律.(二)教学设计的立意基于上述认识,在教学设计中,我们特别强调了如下几个方面,这也
6、是为了体现教材编写意图.1.突出函数概念的本质和建构过程我们认为,函数概念的本质是:函数是两个变量之间的一种特殊的对应关系;函数概念所反映的思想方法是:自变量、因变量都取实数值(这样才有可能用数及其运算的知识来考察现实问题的变化规律);因变量的取值有唯一性;用数以外的符号f(x)表示函数(具体表示形式可以是解析式、图象或表格).为了让学生在经历函数概念的概括过程中,更好地体会其本质和思想方法,我们遵循教材编写意图,在教学设计中强调通过一些具有真实背景的典型实例,从“变量说”出发,引导学生用集合与对应的语言分析它们的共同特征,再概括出“对应说”.这样既衔接了初中阶段将函
7、数看成变量间依赖关系的认识,又使学生在用集合与对应的语言刻画函数概念的过程中形成对函数概念本质的切身体验.2.为学生概括和领悟函数概念搭建“脚手架”函数概念是中学阶段最难理解的概念之一,其原因主要是:由f(x)的形式化表达方式所带来的高度抽象性;变量的概念涉及到用运动、变化的观点看待和思考问题,具有辩证思维特征;有许多下位概念(如自变量、因变量、定义域、值域、单调性、奇偶性……),是派生数学概念的强大“固着点”;具有广泛应用性,建立函数模型不仅需要具备较强的数学能力,而且与学生的人生阅历有关;等.其中最根本的还是其高度抽象性.众所周知,越是基础性的概
此文档下载收益归作者所有