数学常用巧算速算法

数学常用巧算速算法

ID:22451952

大小:905.50 KB

页数:41页

时间:2018-10-29

数学常用巧算速算法_第1页
数学常用巧算速算法_第2页
数学常用巧算速算法_第3页
数学常用巧算速算法_第4页
数学常用巧算速算法_第5页
资源描述:

《数学常用巧算速算法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、校本课程数学计算方法目录第一讲生活中几十乘以几十巧算方法1第二讲常用巧算速算中的思维与方法(1)3第三讲常用巧算速算中的思维与方法(2)5第四讲常用巧算速算中的思维与方法(3)8第五讲常用巧算速算中的思维与方法(4)10第六讲常用巧算速算中的思维与方法(5)14第七讲常用巧算速算中的思维与方法(6)16第八讲小数的速算与巧算1——凑整18第九讲乘法速算119第十讲乘法速算220第十一讲乘法速算322第十二讲乘法速算423第十三讲乘法速算523第十四讲乘法速算625第十五讲乘法速算727第十六讲乘法速算829注:《速算技巧》33校本课程数学计算方法第一讲

2、生活中几十乘以几十巧算方法   1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:12×14=?解:1×1=1 2+4=6 2×4=812×14=168注:个位相乘,不够两位数要用0占位。2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。例:23×27=?解:2+1=3  2×3=6  3×7=2123×27=621注:个位相乘,不够两位数要用0占位。 3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要

3、用0占位。 4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=861 5.11乘任意数:口诀:首尾不动下落,中间之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。 6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。例:13×326=?解:13个位是33×3+2=113×2+6=123×6=1813×326=4238注:和满十要进一。第二讲

4、常用巧算速算中的思维与方法(1)【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为1+2+……+99+100所以,1+2+3+4+……+99+100=101×100÷2=5050“3+5+7+………+97+99=?3+5+7+……+97+99=(99+3)×49÷2=2499。这种算法的思路,见于书籍中最早的是我国古代的《张丘建算经》。张丘建利用这一思路巧妙地解答了“有女不善织”这一名题:“今有女子不善织,日减功,迟。初日织五尺,末日织一尺,今三十日织讫。问织几何?”题目的意思是

5、:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。她第一天织了5尺布,最后一天织了1尺,一共织了30天。问她一共织了多少布?张丘建在《算经》上给出的解法是:“并初末日织尺数,半之,余以乘织讫日数,即得。”“答曰:二匹一丈”。这一解法,用现代的算式表达,就是1匹=4丈,1丈=10尺,90尺=9丈=2匹1丈。张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30天所织的布都加起来,算式就是:5+…………+1在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个相同的数,而这一递减的数不会是个整数。若把这

6、个式子反过来,则算式便是:1+………………+5此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个相同的数。同样,这一递增的相同的数,也不是一个整数。假若把上面这两个式子相加,并在相加时,利用“对应的数相加和会相等”这一特点,那么,就会出现下面的式子:所以,加得的结果是6×30=180(尺)但这妇女用30天织的布没有180尺,而只有180尺布的一半。所以,这妇女30天织的布是180÷2=90(尺)可见,这种解法的确是简单、巧妙和饶有趣味的。第三讲常用巧算速算中的思维与方法(2)方法一:分组计算一些看似很难计算的题目,采用“分组计算”的方法

7、,往往可以使它很快地解答出来。例如:求1到10亿这10亿个自然数的数字之和。这道题是求“10亿个自然数的数字之和”,而不是“10亿个自然数之和”。什么是“数字之和”?例如,求1到12这12个自然数的数字之和,算式是1+2+3+4+5+6+7+8+9+1+0+1+1+1+1+2=5l。显然,10亿个自然数的数字之和,如果一个一个地相加,那是极麻烦,也极费时间(很多年都难于算出结果)的。怎么办呢?我们不妨在这10亿个自然数的前面添上一个“0”,改变数字的个数,但不会改变计算的结果。然后,将它们分组:0和999,999,999;1和999,999,998;2

8、和999,999,997;3和999,999,996;4和999,999,995;5和999,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。