欢迎来到天天文库
浏览记录
ID:6755005
大小:26.12 KB
页数:13页
时间:2018-01-24
《常用的巧算和速算方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、常用的巧算和速算方法常用的巧算和速算方法【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为所以,1+2+3+4+……+99+100=101×100÷2=5050。又如,计算“3+5+7+………+97+99=?”,可以计算为所以,3+5+7+……+97+99=(99+3)×49÷2=2499。这种算法的思路,见于书籍中最早的是我国古代的《张丘建算经》。张丘建利用这一思路巧妙地解答了“有女不善织”这一名题:“今有女子不善织,日减功,迟。初日织五尺,末日织一
2、尺,今三十日织讫。问织几何?”题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。她第一天织了5尺布,最后一天织了1尺,一共织了30天。问她一共织了多少布?张丘建在《算经》上给出的解法是:“并初末日织尺数,半之,余以乘织讫日数,即得。”“答曰:二匹一丈”。这一解法,用现代的算式表达,就是1匹=4丈,1丈=10尺,90尺=9丈=2匹1丈。(答略)张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30天所织的布都加起来,算式就是5+…………+1在这一算式中,每一个往后加的加数,都会比它
3、前一个紧挨着它的加数,要递减一个相同的数,而这一递减的数不会是个整数。若把这个式子反过来,则算式便是1+………………+5此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个相同的数。同样,这一递增的相同的数,也不是一个整数。假若把上面这两个式子相加,并在相加时,利用“对应的数相加和会相等”这一特点,那么,就会出现下面的式子:所以,加得的结果是6×30=180(尺)但这妇女用30天织的布没有180尺,而只有180尺布的一半。所以,这妇女30天织的布是180÷2=90(尺)可见,这种解法的确是简单、巧妙和饶有趣味的
4、。【分组计算】一些看似很难计算的题目,采用“分组计算”的方法,往往可以使它很快地解答出来。例如求1到10亿这10亿个自然数的数字之和。这道题是求“10亿个自然数的数字之和”,而不是“10亿个自然数之和”。什么是“数字之和”?例如,求1到12这12个自然数的数字之和,算式是1+2+3+4+5+6+7+8+9+1+0+1+1+1+1+2=5l。显然,10亿个自然数的数字之和,如果一个一个地相加,那是极麻烦,也极费时间(很多年都难于算出结果)的。怎么办呢?我们不妨在这10亿个自然数的前面添上一个“0”,改变数字的个数,但不会改变计
5、算的结果。然后,将它们两两分组:0和999,999,999;1和999,999,998;2和999,999,997;3和999,999,996;4和999,999,995;5和999,999,994;………………依次类推,可知除最后一个数,1,000,000,000以外,其他的自然数与添上的0共10亿个数,共可以分为5亿组,各组数字之和都是81,如0+9+9+9+9+9+9+9+9+9=811+9+9+9+9+9+9+9+9+8=81………………最后的一个数1,000,000,000不成对,它的数字之和是1。所以,此题的计算
6、结果是(81×500,000,000)+1=40,500,000,000+1=40,500,000,001【由小推大】“由小推大”是一种数学思维方法,也是一种速算、巧算技巧。遇到有些题数目多,关系复杂时,我们可以从数目较小的特殊情况入手,研究题目特点,找出一般规律,再推出题目的结果。例如:(1)计算下面方阵中所有的数的和。这是个“100×100”的大方阵,数目很多,关系较为复杂。不妨先化大为小,再由小推大。先观察“5×5”的方阵,如下图(图4.1)所示。容易看到,对角线上五个“5”之和为25。这时,如果将对角线下面的部分(右
7、下部分)用剪刀剪开,如图4.2那样拼接,那么将会发现,这五个斜行,每行数之和都是25。所以,“5×5”方阵的所有数之和为25×5=125,即53=125。于是,很容易推出大的数阵“100×100”的方阵所有数之和为1003=1,000,000。(2)把自然数中的偶数,像图4.3那样排成五列。最左边的叫第一列,按从左到右的顺序,其他叫第二、第三……第五列。那么2002出现在哪一列:因为从2到2002,共有偶数2002÷2=1001(个)。从前到后,是每8个偶数为一组,每组都是前四个偶数分别在第二、三、四、五列,后四个偶数分别在
8、第四、三、二、一列(偶数都是按由小到大的顺序)。所以,由1001÷8=125…………1,可知这1001个偶数可以分为125组,还余1个。故2002应排在第二列。【凑整巧算】用“凑整方法”巧算,常常能使计算变得比较简便、快速。例如(1)99.9+11.1=(90+10)+(9+1)+(0.9
此文档下载收益归作者所有