基于.matlab的人体姿态的检测课程设计报告

基于.matlab的人体姿态的检测课程设计报告

ID:22448157

大小:1.96 MB

页数:16页

时间:2018-10-29

基于.matlab的人体姿态的检测课程设计报告_第1页
基于.matlab的人体姿态的检测课程设计报告_第2页
基于.matlab的人体姿态的检测课程设计报告_第3页
基于.matlab的人体姿态的检测课程设计报告_第4页
基于.matlab的人体姿态的检测课程设计报告_第5页
资源描述:

《基于.matlab的人体姿态的检测课程设计报告》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、word资料下载可编辑基于视频的人体姿态检测一、设计目的和要求1.根据已知要求分析视频监控中行人站立和躺卧姿态检测的处理流程,确定视频监中行人的检测设计的方法,画出流程图,编写实现程序,并进行调试,录制实验视频,验证检测方法的有效性,完成系统软件设计。2.基本教学要求:每人一台计算机,计算安装matlab、visio等软件。二、设计原理2.1图像分割中运动的运用(运动目标检测)首先利用统计的方法得到背景模型,并实时地对背景模型进行更新以适应光线变化和场景本身的变化,用形态学方法和检测连通域面积进行后处理,消除噪声和背景扰动带来的影响,在HSV色度

2、空间下检测阴影,得到准确的运动目标。噪声的影响,会使检测结果中出现一些本身背景的区域像素点被检测成运动区域,也可能是运动目标内的部分区域被漏检。另外,背景的扰动,如树枝、树叶的轻微摇动,会使这部分也被误判断为运动目标,为了消除这些影响,首先对上一步的检测结果用形态学的方法进行处理,在找出经过形态学处理的后的连通域,计算每个连通域中的面积,对于面积小于一定值的区域,将其抛弃,不看做是前景运动目标。2.2bwlabel函数用法:L=bwlabel(BW,n)[L,num]=bwlabel(BW,n),这里num返回的就是BW中连通区域的个数。返回一个

3、和BW大小相同的L矩阵,包含了标记了BW中每个连通区域的类别标签,这些标签的值为1、2、num(连通区域的个数)。n的值为4或8,表示是按4连通寻找区域,还是8连通寻找,默认为8。四连通或八连通是图像处理里的基本感念:8连通,是说一个像素,如果和其他像素在上、下、左、右、左上角、左下角、右上角或右下角连接着,则认为他们是联通的;4连通是指,如果像素的位置在其他像素相邻的上、下、左或右,则认为他们是连接着的,连通的,在左上角、左下角、右上角或右下角连接,则不认为他们连通。2.3regionprops统计被标记的区域的面积分布,显示区域总数专业技术资

4、料word资料下载可编辑函数regionprops语法规则为:STATS=regionprops(L,properties)该函数用来测量标注矩阵L中每一个标注区域的一系列属性。L中不同的正整数元素对应不同的区域,例如:L中等于整数1的元素对应区域1;L中等于整数2的元素对应区域2;以此类推。返回值STATS是一个长度为max(L(:))的结构数组,结构数组的相应域定义了每一个区域相应属性下的度量。Properties可以是由逗号分割的字符串列表、包含字符串的单元数组、单个字符串'all'或者'basic'。如果properties等于字符串'a

5、ll',则表4.1中的度量数据都将被计算;如果properties等于字符串'basic',则属性:'Area','Centroid'和'BoundingBox'将被计算。'Area'—— 图像各个区域中像素总个数'BoundingBox'—— 包含相应区域的最小矩形'Orientation'与区域具有相同标准二阶中心矩的椭圆的长轴与x轴的交角(度)一、设计内容3.1理论依据3.1.1应用背景与意义随着监控系统到位,以帮助人们甚至完成监控任务。可以减少人力和财力的投入,由于就业监视人员进行。另外,如果长时间不运动图像信息记录,保存几下,就失去了意

6、义和视频监控系统的存储资源浪费存储空间。因此,传统的监视系统浪费了大量的人力,并有可能引起报警,性能差的实时监控的泄漏。监控等实时行为分析系统来识别人体,不仅可以替代监控人员的工作的一部分,提高监测系统的自动化水平,同时也提高监视存储的效率,还有一个广泛的应用,并在视频监视系统的潜在经济价值之前。由于人的行为具有自由的伟大程度,因为身体宽松长裙不同程度和它的外貌和从图像捕获设备位置不同距离的表现风格将是一个很大的分歧,这是人的行为分析,找出了一定的难度。但是,人类行为的实时分析,智能监控系统,以确定关键技术及其广阔的前景药,安全性,虚拟现实,军事

7、和潜在的经济价值,国内外研究机构和学者越来越多的关注,并在许多全球领先的刊物和会议专题讨论。美国和欧洲都进行了一些相关的研究项目。3.1.2运动分割算法首先利用统计的方法得到背景模型,并实时地对背景模型进行更新以适应光线变化和场景本身的变化,用形态学方专业技术资料word资料下载可编辑法和检测连通域面积进行后处理,消除噪声和背景扰动带来的影响,在HSV色度空间下检测阴影,得到准确的运动目标。本次采用了基于累积差分和数学形态学处理的运动区域提取算法。在时域窗口内,首先对图象进行降级处理得到灰度带图象,对灰度带差分图象累积并进行数学形态学处理得到运动

8、目标的轨迹模版,将轨迹模版与当前帧差分图象与运算得到当前帧运动目标象素,最后进行多级数学形态学处理得到当前帧运动区域。实验结果表明,该算

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。