三角函数部分高考题(带答案)

三角函数部分高考题(带答案)

ID:22349961

大小:845.50 KB

页数:11页

时间:2018-10-28

三角函数部分高考题(带答案)_第1页
三角函数部分高考题(带答案)_第2页
三角函数部分高考题(带答案)_第3页
三角函数部分高考题(带答案)_第4页
三角函数部分高考题(带答案)_第5页
资源描述:

《三角函数部分高考题(带答案)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、22.设的内角所对的边长分别为,且.(Ⅰ)求的值;(Ⅱ)求的最大值.解析:(Ⅰ)在中,由正弦定理及可得即,则;(Ⅱ)由得当且仅当时,等号成立,故当时,的最大值为.23.在中,,.(Ⅰ)求的值;(Ⅱ)设的面积,求的长.解:(Ⅰ)由,得,由,得.所以.5分(Ⅱ)由得,由(Ⅰ)知,故,8分又,故,.所以.10分24.已知函数()的最小正周期为.11(Ⅰ)求的值;(Ⅱ)求函数在区间上的取值范围.解:(Ⅰ).因为函数的最小正周期为,且,所以,解得.(Ⅱ)由(Ⅰ)得.因为,所以,所以,因此,即的取值范围为.25.求函数的最大值与最小值。【解】:由于函数

2、在中的最大值为最小值为11故当时取得最大值,当时取得最小值26.知函数()的最小值正周期是.(Ⅰ)求的值;(Ⅱ)求函数的最大值,并且求使取得最大值的的集合.(17)本小题主要考查特殊角三角函数值、两角和的正弦、二倍角的正弦与余弦、函数的性质等基础知识,考查基本运算能力.满分12分.(Ⅰ)解:由题设,函数的最小正周期是,可得,所以.(Ⅱ)由(Ⅰ)知,.当,即时,取得最大值1,所以函数的最大值是,此时的集合为.27.已知函数(Ⅰ)求函数的最小正周期和图象的对称轴方程(Ⅱ)求函数在区间上的值域解:(1)11由函数图象的对称轴方程为(2)因为在区间

3、上单调递增,在区间上单调递减,所以当时,取最大值1又,当时,取最小值所以函数在区间上的值域为28.已知函数f(x)=为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为(Ⅰ)美洲f()的值;(Ⅱ)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.解:(Ⅰ)f(x)===2sin(-)因为 f(x)为偶函数,所以 对x∈R,f(-x)=f(x)恒成立,11因此 sin(--)=sin(-).即-sincos(-)+cossin(-)=

4、sincos(-)+cossin(-),整理得 sincos(-)=0.因为 >0,且x∈R,所以 cos(-)=0.又因为 0<<π,故 -=.所以 f(x)=2sin(+)=2cos.由题意得   故    f(x)=2cos2x.因为   (Ⅱ)将f(x)的图象向右平移个个单位后,得到的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到的图象. 当     2kπ≤≤2kπ+π(k∈Z),即     4kπ+≤≤x≤4kπ+(k∈Z)时,g(x)单调递减.因此g(x)的单调递减区间为     (k∈Z)29.如图,在平面直角坐

5、标系中,以轴为始边做两个锐角,,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为.(Ⅰ)求tan()的值;(Ⅱ)求的值.由条件的,因为,为锐角,所以=因此11(Ⅰ)tan()=(Ⅱ),所以∵为锐角,∴,∴=30.在中,角所对应的边分别为,,,求及解:由得∴∴∴,又∴由得即∴由正弦定理得31.已知函数(Ⅰ)将函数化简成(,,)的形式;(Ⅱ)求函数的值域.11本小题主要考查函数的定义域、值域和三角函数的性质等基本知识,考查三角恒等变换、代数式的化简变形和运算能力.(满分12分)解:(Ⅰ)  =(Ⅱ)由得在上为减函数,在上为增函数

6、,又(当),即故g(x)的值域为32.已知函数.(Ⅰ)求函数的最小正周期及最值;(Ⅱ)令,判断函数的奇偶性,并说明理由.解:(Ⅰ).11的最小正周期.当时,取得最小值;当时,取得最大值2.(Ⅱ)由(Ⅰ)知.又...函数是偶函数.33.设的内角A,B,C的对边分别为a,b,c,且A=,c=3b.求:(Ⅰ)的值;(Ⅱ)cotB+cotC的值.解:(Ⅰ)由余弦定理得=故(Ⅱ)解法一:      =      =      由正弦定理和(Ⅰ)的结论得           故11  解法二:由余弦定理及(Ⅰ)的结论有            =    

7、 故     同理可得              从而34.已知向量m=(sinA,cosA),n=,m·n=1,且A为锐角.(Ⅰ)求角A的大小;(Ⅱ)求函数的值域.本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变换、一元二次函数的最值等基本知识,考查运算能力.满分12分.   解:(Ⅰ)由题意得          由A为锐角得    (Ⅱ)由(Ⅰ)知       所以       因为x∈R,所以,因此,当时,f(x)有最大值.       当sinx=-1时,f(x)有最小值-3,所以所求函数f(x)的值域是.1135

8、.已知函数,的最大值是1,其图像经过点.(1)求的解析式;(2)已知,且,,求的值.(1)依题意有,则,将点代入得,而,,,故;(2)依题意有,而,,。36.在中,内角对边的边长

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。