初中数学思想和数学方法的教学浅谈

初中数学思想和数学方法的教学浅谈

ID:22315495

大小:51.50 KB

页数:5页

时间:2018-10-28

初中数学思想和数学方法的教学浅谈_第1页
初中数学思想和数学方法的教学浅谈_第2页
初中数学思想和数学方法的教学浅谈_第3页
初中数学思想和数学方法的教学浅谈_第4页
初中数学思想和数学方法的教学浅谈_第5页
资源描述:

《初中数学思想和数学方法的教学浅谈》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、初中数学思想和数学方法的教学浅谈【摘要】《九年义务教育全日制初级中学数学课程标准》明确提出:“初中数学中的基础知识包括初中代数、几何中的概念、法则、性质、公式、公理、定理等,以及由其内容所反映出来的数学思想和方法”。把数学思想、方法作为基础知识的重要组成部分,这是《课程标准》体现义务教育性质的重要表现。在教学实践中如何把握数学思想和数学方法,笔者谈谈粗浅的看法,以求教方家。  【关键词】初中数学教学;数学思想;数学方法  一、理解数学思想和数学方法的关系  所谓数学思想,就是对数学知识和方法的本质认

2、识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程度时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。  实际上,数学思想和方法的内涵与外延,往往难以界定,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割,它们既相辅相

3、成,又相互蕴含。  二、把握《课程标准》关于数学思想和方法的不同层次要求  《课程标准》对初中数学中渗透的数学思想、方法划分为三个层次,即“了解"、“理解”和“会应用”。  数学思想主要是让学生达到了解层次,包括数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。这里需要说明的是,有些数学思想在课标中并没有明确提出来,教师有必要指出来,让学生了解。比如由一般向特殊转化的思想,方程(组)的解法中,就贯穿了这一思想,让学生了解,有助于深入学习。数学方法有的只求了解,有的则要求理解或会运用。

4、要求了解的方法有:分类法、类比法、反证法等;要求理解或会运用的方法有:待定系数法、消元法、降次法、配方法、换元法、图像法等。  在教学中,要认真把握好“了解”、“理解”、“会应用”这三个层次。不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次,不然的话,学生可能会觉得一些数学思想、方法抽象难懂、高深莫测,从而导致他们失去信心,给教学带来困难。如初中几何,教材明确提出“反证法”的方法,且说明了运用“反证法”的一般步骤,有的教师可能会觉得有讲头,而详加讲解,并要求学生学

5、会;但《课程标准》只是把“反证法”定位在“了解”的层次上,对照起来,这样的教学就失“度”了,拔高了,其结果恐怕是花费了许多教学时间,但收效甚微。  三、采用合宜的方式教数学思想和数学方法  所谓“合宜”,就是要符合学生的认知水平和认知规律,以学生为中心,循序渐进,合理安排。  1.整体设计,由浅入深  数学思想的内容是相当丰富的,方法也有难有易,因此,必须分层次地进行渗透和教学。这就需要教师全面地熟悉初中三个年级的教材,钻研教材,按照初中三个年级不同的年龄特征、知识掌握的程度、认知能力、理解能力和可

6、接受性能力由浅入深,由易到难分层次地进行数学思想、方法的教学。整体设计是由浅入深地组织教学的前提,只有从整体出发,才能充分把握思想和方法在什么时候、面对什么问题,需要浅教还是深教,也只有从整体出发,面对同类问题,体现逐步加深的过程,使学生循序渐进地更加有成效地获取完整的认识。  2.以数学知识为载体,渗透“思想”和“方法”  这里的“数学知识”指概念、法则、性质、公式、公理、定理等。《课程标准》说得很清楚,数学知识包括两方面,一方面是概念、法则、性质、公式、公理、定理等,另一方面是指思想和方法,而思

7、想和方法是“由其内容所反映出来”,因而应该将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,并在过程中形成数学思想和方法。  在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。  3.体现“特殊—般—特殊”的思路  数学思想和方法

8、属于高级的知识,这些知识应当从具体的解题实践中总结出来,然后通过迁移训练,使学生真正领会这些思想和方法。这个过程常常需要多次反复。知识的掌握往往要经历“特殊—一般—特殊”的实践过程,思想和方法的掌握更是如此。这个过程要求教师从具体(特殊)的数学问题出发,在问题解决过程中形成一般性的思想或方法,但要明白这种思想和方法的意义,还需要学生回归到具体(特殊)的数学问题中去,只有这样,思想或方法才能在学生心中比较牢固地建立起来,在解决具体的数学问题时发挥指导作用。如此循环往复,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。