ug三维技术在模具改进设计中的应用

ug三维技术在模具改进设计中的应用

ID:22311168

大小:54.50 KB

页数:7页

时间:2018-10-28

ug三维技术在模具改进设计中的应用_第1页
ug三维技术在模具改进设计中的应用_第2页
ug三维技术在模具改进设计中的应用_第3页
ug三维技术在模具改进设计中的应用_第4页
ug三维技术在模具改进设计中的应用_第5页
资源描述:

《ug三维技术在模具改进设计中的应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、UG三维技术在模具改进设计中的应用

2、第1内容显示中1、前言近年来,随着三维CAD技术的飞速发展,使其在机械工程领域的应用越发广泛,尤其在模具设计制造方面,三维CAD软件更是设计人员的得力助手,有效地提高了工作效率,减轻了劳动强度。在众多三维CAD软件中,UG以其强大的功能长期占据业界的主导地位。UG是个基于特征的,全参数化的辅助设计软件,它能实现CAD,CAE,CAM等各种功能,涵盖机械设计各个领域。它有许多特点非常适用于模具的设计及改造:比如直接建模能够在已有特征上快速建模,有利于模具的结构改动;参数化设计能快速改动设计尺寸

3、,无避免繁琐的尺寸计算;几何关系联接能快速建立装配零件间的对应关系,使一些零件随关键零件的改动而改动,实现“牵一发,而动全身”的效果;精确的干涉检查,尺寸测量能让设计人员第一时间知道零件间的装配关系,了解设计的效果,避免实际装配中的干涉;简便的三维二维转换及出图功能能快速完成零件图的绘制,减少重复劳动,缩小设计周期;还有许多特点,在此不一一敖述,下面以一个实例,与各位同行分享UG强大功能在模具快速改造中的应用。我公司原生产直径为96mm的机壳,该机壳卷圆由Φ96机壳卷圆模完成。该卷圆模外形见图1。由于新产品发展的需要,我公司要

4、将原来直径为96mm的机壳改为105mm,故需重新设计Φ105的机壳卷圆模。2、改造思路分析为了使生产设备保持原有功能、结构和精度,节约成本以及降低改造难度,应该尽量少地改动原有零部件。可以将改动集中到某些关键零件上,这里的关键零件是指那些因为加工件尺寸变化后,受到影响的模具零件,以及一些能将其它零件改动量集中到自身的零件。这个思路正好能通过UG的功能特点实现。基于这个思路,我们根据加工件所改动的尺寸(在这里是机壳直径由Φ96mm变为Φ105mm)寻找与其相关联的模具零件,排出相应的尺寸链,确定关键零件。在这付卷圆模改造中,因

5、为机壳只是增大了直径尺寸,即加工板料的长度变长,至于宽度方向,由于原来的卷圆模能在该方向上调节间距,故不必考虑此处的改动。加工板料的加长,导致模具的卷圆机构和送料、卸料机构需要改动。我们就从这几个部分改造模具。3、UG在模具改造过程中的应用(1)卷圆机构:图2为机壳卷圆原理图,机壳直径变大直接影响模芯的直径。图中最下方为模芯改动的三种方式。I、II两种方式会导致牵涉的零件较多,包括中模部分,而且对冲床的行程要进行重新计算。如果采用III的方式,中模不用改变位置,其他零件都以原有模芯的圆心为基准改动尺寸;改动上下模后,也不必调整

6、冲床的设置参数。最终,我们采用了方式III。决定了改动方式,就可以排出相关的尺寸链。我们使用UG软件将原有Φ96机壳卷圆模的零件进行三维建模并虚拟装配。再借助UG强大的参数化功能,将Φ105机壳卷圆模的尺寸赋给UG,就可以方便快捷地改动原零件尺寸以及装配尺寸链。采用方式III,模芯位置不变,使得上下模和侧模的基准也不变。只需将原来模芯的尺寸放大到105mm即可。同时,上下模及侧模外形与模芯配合成一圆,在UG中建立了尺寸关系,上下模和侧模的尺寸也自动变化到与模芯改动尺寸相配。在UG上很快可以看到改动效果,经UG的干涉及尺寸测量,

7、如果发现有干涉,再及时改正原有数据。采用同样的方法,可以完成卷圆机构中,斜锲挡板的定位等等,使用这种方法可以快速地完成改造,而且不易出错。(2)送料机构:因为方式III中,板料上升了(105-96)/2=4.5mm的距离,从而致使送料机构要调整高度。如前所述,如果把零件尺寸的改动集中到关键零件,就能减少零件的改动量,降低改造难度,提高效率。巧的是所有的送料机构零件都装在送料安装座上,所以只要改动送料安装座的厚度就能达到效果。该模具采用气缸推动板料送料,四块板料头尾相接依次进料。由于板料长度加长,所以送料机构也要加长。为此需要重

8、新计算送料板的长度。为了使设计简单化同时减少误差,根据先前的基本思路,我们把所有的尺寸改动集中到最后一节送料板,如图3所示。其它尺寸包括安装关系不变。这样只要将最后一节送料板的长度单边向外加长即可。这部分的改动,是我们改动思路的最好体现。四块板料的连接形式如图4。板与板之间交错啮合,利用UG干涉检查可以将它们方便地啮合在一起,从而算出总长,精度很高。以第一块板为基准,它的位置不变(改动前后改板的中心都对准模芯的中心),其它板依次向外移。在尺寸确定上,可以使用UG的WAVE几何关系连接器的功能。它可以基于一个已经建立的零件,去设

9、计新的零件。借用这种功能先建立好板料位置,然后根据板料的几何面、线及点,去设计需要改变尺寸的最后一节送料板。例如:需要求出最后一节送料板的长度,可以选择第四块板料的最外侧面,然后设计的送料板长度只要超过这个面即可。这样一来,极大地方便了设计,在传统设计中要自己算尺寸,然后制图

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。