lcos(硅基液晶)显示屏设计与应用

lcos(硅基液晶)显示屏设计与应用

ID:22310536

大小:53.50 KB

页数:8页

时间:2018-10-28

lcos(硅基液晶)显示屏设计与应用_第1页
lcos(硅基液晶)显示屏设计与应用_第2页
lcos(硅基液晶)显示屏设计与应用_第3页
lcos(硅基液晶)显示屏设计与应用_第4页
lcos(硅基液晶)显示屏设计与应用_第5页
资源描述:

《lcos(硅基液晶)显示屏设计与应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LCoS(硅基液晶)显示屏设计与应用

2、第1lunm。由于LCoS可利用常规的CMOS技术批量生产,并可随半导体工艺的发展进一步微型化,同时提高分辨率,LCoS显示器将具备低功耗、微型尺寸、超轻重量等特点,因此在个人便携显示应用方面非常有优势,特别是功耗远低于许多有源矩阵液晶显示器(AMLCD),而生产成本可望与阴极射线管(CRT)相比拟。尽管LCoS显示屏通常只有指甲大小,相应的像素也就非常小,以至不利于肉眼直接分辨,但LCoS显示器都配备有各式各样的用于放大图像光学系统(OpticalEngine):一种是直接投影到视网膜上形成放大的虚像,由此产生了个人用虚拟成像平显示技

3、术;另一种是运用屏幕投影形成放大实像,如图1所示。LCoS显示技术导致了一类新型的大屏幕平板显示器件的诞生。作为LCoS显示技术核心的关键部件的单晶硅背板(LCoS显示芯片),是一块多功能、多结构的片上系统(SoC),即整个显示系统集成在一起18mm左右的晶片上。然而,SoC类芯片的设计必须全盘考虑整个系统的各种情况。正是因为如此设计周全,与由分离IC组合的显示系统相比,SoC类芯片可以在同样的工艺技术条件下实现更高性能的系统指标。可以预计,以系统芯片方式设计生产的新一代液晶显示器,其应用前景将非常广阔[2]。500)this.style.ouseg(this)">2LCo

4、S显示屏LCoS显示屏通常分为两大类:透射型和反射型。虽然它们几何光学原理上截然迥异,但都能有选择地调制外光源光线而形成图像。透射型首先在晶片上完成驱动控制电路的设计制作,再用剥离(lift-off)技术[3]或各向异性刻蚀(anisotropicetching)技术[4]分离出管芯,粘附到透明衬底上制成微显芯片。如此巧妙设计一方面是利用单晶硅的优质电学性能,另一方面则是利用成熟的IC设计制造技术。反射型则是直接在晶片上制作驱动电路和显示矩阵电路,然后以此为基底封装液晶材料形成类似传统LCD(LiquidCrystalDisplay)结构的平板显示屏。所以常规IP技术可直接

5、用于设计制作硅基液晶显示屏。图2是笔者运用CadenceEDA工具,采用0.6μm的n-阱四层金属CMOS工艺规则设计的反射式LCoS(VGA分辨率,时序彩色化)电路结构图。其电路可划分为行扫描驱动器,列数据输入驱动器(包含DAC电路)和显示驱动矩阵(有源NMOS矩阵)[5]。在列数据输入驱动器中,串行输入的多位数字视频信号通过移位寄存器的作用,依次存入数字锁存器,然后在同一读出信号作用下,配合行扫描信号,同时输入到各列的数/模转换器(DAC),之后输出模拟电压信号作用到像素,因此一帧图像将被一次一行地传送到所有列。在行扫描驱动器中,行扫描信号通过另一组移位寄存器作用,产生

6、与数字视频信号同步的逐行扫描信号。有源显示驱动矩阵的每一个像给包括像素开关(NMOS晶体管)、500)this.style.ouseg(this)">存储电容和在它们上面的铝反射电极。NMOS晶体管控制列数据线对液晶像素的充电,而存储电容中的充电电荷建立了相对于控制电极的电压差。由于液晶材料本身也有电容,并沿分子的取向充电,当一定量的电荷积聚在像素上时,液晶将按所施加的电场取向。液晶分子的再取向,导致液晶电容的变化,这就改变了加在像素的电压。为了解决这个问题,需要用较大的存储电容。像素的截面如图3所示,采用了四层金属,分别用于扫描线、数据线、避光层和铝反射镜面电极。扫描线控

7、制NMOS晶体管(像素开关)的栅极,当NMOS导通时数据线上的信号驱动到像素上。晶体管漏极,存储电容和反射镜面电极是电导通的。硅背板顶部制作1μm厚的液晶衬垫,用以确定液晶盒间隙。整个硅背板都是在常规IC芯片生产线上完成的。在加工好的LCoS显示芯片上,覆盖取向层,涂上密封胶,粘合附着ITO电极的玻璃盖板,最后向这个液晶盒灌注液晶材料就形成了LCoS显示器。尽管LCoS显示芯片的面积比较大,但绝大部分是像素阵列,晶体管密度较低,故可得到高的成品率。采用现代IC制造技术生产LCoS显示器可谓驾轻就熟,也是制造高分辨率LCD显示器的一条降低成本途径。3芯片功耗分析功率损耗是制允

8、集成电路的一个重要因素,而CMOS电路的主要特点就是低功耗。由于LCoS芯片上的像素尺寸非常小(7~20μm),制作相应微滤色片(microfilter)的工艺复杂,且成本高。通常采用无微滤色片工艺,在单片LCoS芯片上使用时间混色模式(时序彩色化)实现彩色显示。表面上看时序彩色模式的LCoS芯片,要求其帧频为普通VGA显示的3倍以上来刷新屏幕,似乎功耗会增加许多倍,但实际并非如此。在图2所的实际电路结构中,我们设计了行锁存器。这样,就可以采用逐行写入方式,把每场的图像信号输入到像素显示矩阵中。纵向数据驱动器中视频

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。