最优化lp对偶原理

最优化lp对偶原理

ID:22247910

大小:273.50 KB

页数:20页

时间:2018-10-20

最优化lp对偶原理_第1页
最优化lp对偶原理_第2页
最优化lp对偶原理_第3页
最优化lp对偶原理_第4页
最优化lp对偶原理_第5页
资源描述:

《最优化lp对偶原理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一、对偶问题的提出1、对偶思想举例周长一定的矩形中,以正方形面积最大;面积一定的矩形中,以正方形周长最小;Chapter3LP的对偶问题2、换个角度审视生产计划问题例2-1要求制定一个生产计划方案,在劳动力和原材料可能供应的范围内,使得产品的总利润最大。资源产品人力原材料单位利润甲112乙143丙173现有资源39若工厂自己不生产产品甲、乙和丙,将现有的工时及原材料转而接受外来加工时,工厂要求包工及原材料的总价格最低。对偶变量的经济意义可以解释为对工时及原材料的单位定价;(用于生产第i种产品的资源转让收益不小于生产该种产品时获得的利润)当原问题和对偶问

2、题都取得最优解时,这一对线性规划对应的目标函数值是相等的:Zmax=Wmin=8考察原问题和对偶问题的解,给作决策的管理者另一个自由度;怎样通过增加更多的资源来增加利润?怎样使用不同类型的资源来增加利润?价格VaVbVc甲0.810000.617.5乙0.515000.277.5丙0.917500.680丁1.532500.330例2-2采购甲、乙、丙、丁4种食品量分别为x1,x2,x3,x4,在保证人体所需维生素A(4000)、B(1)、C(30)前提下,使总的花费最小。3、饮食与营养问题换一个角度,生产营养药丸的制药公司力图使营养师相信,各种营

3、养药丸勿须通过多种食品的转换就能供营养师调剂。制药公司面对的问题是为营养药丸确定单价,以获得最大的收益,同时与真正的食品竞争。于是,营养药丸的单位成本不能超过相应食品的市价。1.对称形式的对偶关系的矩阵描述(D)(L)怎样从原始问题写出其对偶问题?按照定义;记忆法则:“上、下”交换,矩阵转置,不等式变号,“极小”变“极大”二、对偶问题的一般形式例2-3写出下面线性规划的对偶问题:2、非对称形式的对偶关系:(1)原问题对偶问题(特点:对偶变量符号不限,系数阵转置)(特点:等式约束)(2)怎样写出非对称形式的对偶问题?把一个等式约束写成两个不等式约束

4、,再根据对称形式的对偶关系定义写出;按照原始-对偶表直接写出;(3)原始-对偶表原问题(或对偶问题)对偶问题(或原问题)目标函数Min目标函数Max约束条件数:m个对偶变量数:m个决策变量数:n个约束条件数:n个课堂练习:写出下面线性规划的对偶规划:三、对偶定理对偶定理是揭示原始问题的解与对偶问题的解之间重要关系的一系列定理。定理3-1对称性定理——对偶问题的对偶是原问题。定理3-2弱对偶定理——若一对对称形式的对偶线性规划(L)和(D)均有可行解,分别为和,则该结论对非对称形式的对偶问题同样成立。定理3-3最优性准则定理若、分别为一对对偶线性规划的

5、可行解,且两者目标函数的相应值相等,即,则,分别为原始问题和对偶问题的最优解。定理3-4强对偶定理若原始问题和对偶问题两者均可行,则两者均有最优解,且此时目标函数值相同。原始问题对偶问题有最优解有最优解无界不可行不可行无界不可行不可行LP原始问题与对偶问题的关系:(P)和(D)定理3-5设分别是原问题(P)和对偶问题(D)的可行解,则为(P)和(D)最优解的充要条件是

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。