欢迎来到天天文库
浏览记录
ID:22140388
大小:11.57 MB
页数:11页
时间:2018-10-27
《第24讲 圆的有关性质》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第24讲 圆的有关性质[锁定目标考试]考标要求考查角度1.理解圆的有关概念和性质,了解圆心角、弧、弦之间的关系.2.了解圆心角与圆周角及其所对弧的关系,掌握垂径定理及推论. 中考主要考查圆的有关概念和性质,与垂径定理有关的计算,与圆有关的角的性质及其应用.题型以选择题、填空题为主.[导学必备知识]知识梳理一、圆的有关概念及其对称性1.圆的定义(1)圆是平面内到一定点的距离等于定长的所有点组成的图形.这个定点叫做________,定长叫做________;(2)平面内一个动点绕一个定点旋转一周所形成的图形叫做圆,定点叫做圆
2、心,定点与动点的连线段叫做半径.2.圆的有关概念(1)连接圆上任意两点的________叫做弦;(2)圆上任意两点间的________叫做圆弧,简称弧;(3)________相等的两个圆是等圆;(4)在同圆或等圆中,能够互相________的弧叫做等弧.3.圆的对称性(1)圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;(2)圆的中心对称性:圆是以圆心为对称中心的中心对称图形;(3)圆是旋转对称图形:圆绕圆心旋转任意角度,都能和原来的图形重合.这就是圆的旋转不变性.二、垂径定理及推论1.垂径定理垂直于弦的
3、直径________这条弦,并且________弦所对的两条弧.2.推论1(1)平分弦(________)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过________,并且平分弦所对的________弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.3.推论2圆的两条平行弦所夹的弧________.4.(1)过圆心;(2)平分弦(不是直径);(3)垂直于弦;(4)平分弦所对的优弧;(5)平分弦所对的劣弧.若一条直线具备这五项中任意两项,则必具备另外三项.三、圆心角、弧、弦之间的关
4、系1.定理在同圆或等圆中,相等的圆心角所对的弧________,所对的弦________.2.推论同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等.三项中有一项成立,则其余对应的两项也成立.四、圆心角与圆周角1.定义顶点在________上的角叫做圆心角;顶点在________上,角的两边和圆都________的角叫做圆周角.2.性质(1)圆心角的度数等于它所对的______的度数.(2)一条弧所对的圆周角的度数等于它所对________的度数的一半.(3)同弧或等弧所对的圆周角________,同圆
5、或等圆中相等的圆周角所对的弧________.(4)半圆(或直径)所对的圆周角是______,90°的圆周角所对的弦是________.五、圆内接四边形的性质圆内接四边形的对角互补.自主测试1.(2012重庆)如图,已知OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为( )A.45°B.35°C.25°D.20°2.(2012山东泰安)如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是( )A.CM=DMB.C.∠ACD=∠ADCD.OM=MD3.(2012浙江湖州)如图,△A
6、BC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是( )A.45°B.85°C.90°D.95°4.(2012浙江衢州)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为__________mm.5.(2012四川成都)如图,AB是⊙O的弦,OC⊥AB于C.若AB=2,OC=1,则半径OB的长为__________.6.(2012山东青岛)如图,点A,B,C在⊙O上,∠A
7、OC=60°,则∠ABC的度数是__________°.[探究重难方法]考点一、垂径定理及推论【例1】在圆柱形油槽内装有一些油.截面如图,油面宽AB为6分米,如果再注入一些油后,油面AB上升1分米,油面宽变为8分米,圆柱形油槽直径MN为( )A.6分米B.8分米C.10分米D.12分米分析:如图,油面AB上升1分米得到油面CD,依题意得AB=6,CD=8,过O点作AB的垂线,垂足为E,交CD于F点,连接OA,OC,由垂径定理,得AE=AB=3,CF=CD=4,设OE=x,则OF=x-1,在Rt△OAE中,OA2=AE2+
8、OE2,在Rt△OCF中,OC2=CF2+OF2,由OA=OC,列方程求x即可求得半径OA,得出直径MN.解析:如图,依题意得AB=6,CD=8,过O点作AB的垂线,垂足为E,交CD于F点,连接OA,OC,由垂径定理,得AE=AB=3,CF=CD=4,设OE=x,则OF=x-1,在Rt△OAE中,OA2
此文档下载收益归作者所有